389 research outputs found

    Historical influences on the current provision of multiple ecosystem services: is there a legacy of past landcover?

    Get PDF
    Ecosystem service provision varies temporally in response to natural and human-induced factors, yet research in this field is dominated by analyses that ignore the time-lags and feedbacks that occur within socio-ecological systems. The implications of this have been unstudied, but are central to understanding how service delivery will alter due to future land-use/cover change. Urban areas are expanding faster than any other land-use, making cities ideal study systems for examining such legacy effects. We assess the extent to which present-day provision of a suite of eight ecosystem services, quantified using field-gathered data, is explained by current and historical (stretching back 150 years) landcover. Five services (above-ground carbon density, recreational use, bird species richness, bird density, and a metric of recreation experience quality (continuity with the past) were more strongly determined by past landcover. Time-lags ranged from 20 (bird species richness and density) to over 100 years (above-ground carbon density). Historical landcover, therefore, can have a strong influence on current service provision. By ignoring such time-lags, we risk drawing incorrect conclusions regarding how the distribution and quality of some ecosystem services may alter in response to land-use/cover change. Although such a finding adds to the complexity of predicting future scenarios, ecologists may find that they can link the biodiversity conservation agenda to the preservation of cultural heritage, and that certain courses of action provide win-win outcomes across multiple environmental and cultural goods

    Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities

    Get PDF
    Grasslands provide multiple Ecosystem Services (ES) such as forage provision, carbon sequestration or habitat provision. Knowledge about the trade-offs between these ES is of great importance for grassland management. Yet, the outcome of different management strategies on ES provision is highly uncertain due to spatial variability. We aim to characterize the provision (level and spatial variability) of grassland ES under various management strategies. To do so, we combine empirical data for multiple ES with spatially explicit census data on land use intensities. We analyzed the variations of five ES (forage provision, climate regulation, pollination, biodiversity conservation and outdoor recreation) using data from biodiversity fieldwork, experimental plots for carbon as well as social network data from Flickr. These data were used to calculate the distribution of modelled individual and multiple ES values from different grassland management types in a Swiss case study region using spatial explicit information for 17,383 grassland parcels. Our results show that (1) management regime and intensity levels play an important role in ES provision but their impact depends on the ES. In general, extensive management, especially in pastures, favors all ES but forage provision, whereas intensive management favors only forage provision and outdoor recreation; (2) ES potential provision varies between parcels under the same management due to the influence of environmental drivers, related to topography and landscape structure; (3) there is a trade-offs between forage provision and other ES at the cantonal level but a synergy between forage provision and biodiversity conservation within the grassland categories, due to the negative impact of elevation on both ES. Information about multiple ES provision is key to support effective agri-environmental measures and information about the spatial variability can prevent uncertain outputs of decision-making processes

    Trade-offs in linking adaptation and mitigation in the forests of the Congo Basin

    Get PDF
    Recent discussions on forests and climate change have highlighted the potential for conservation of tropical forests to contribute synergistically to both mitigation (reducing emissions of greenhouse gases) and adaptation (increasing capacity to cope with changing climate conditions). Key mechanisms through which adaptive advantages might be gained include the potential for forest resources to support livelihoods in the context of climatic strains on agriculture and the protection that intact forest ecosystems might provide against landslides, flash floods and other hazards related to extreme weather. This paper presents findings from field research with forest communities in three areas of the Congo Basin in Central Africa, in which the adaptive role and potential of forests in these respects is critically analysed. The investigation was carried out through a combination of structured and semi-structured qualitative techniques within six villages in Cameroon, Equatorial Guinea and Rwanda. The findings of the research highlight the need to understand both the limits of synergy, and the constraints and trade-offs for rural livelihoods that may be associated with a forest conservation agenda driven by the additional impetus of carbon sequestration. The search for synergy may be conceptually laudable, but if forest management actions do not take account of on-the-ground contexts of constraints and social trade-offs then the result of those actions risks undermining wider livelihood resilience

    How coastal strategic planning reflects interrelationships between ecosystem services: a four-step method

    Get PDF
    Explicit and integrated inclusion of ecosystem services (ESs) and their interrelationships can improve the quality of strategic plans and decision-making processes. However, there is little systematic analysis of how ES interrelationships are framed in policy language, particularly in coastal planning discourse. The objective of this paper is therefore to present a four-step method, based on content analysis, to assess ES interrelationships in coastal strategic planning documents. The method consists of: 1) selecting strategic plans; 2) identifying ESs; 3) identifying drivers, ESs and their effects; and 4) constructing relational diagrams. The four-step method is applied to a case of Jiaozhou Bay in China, demonstrating its capacity of identifying which drivers and ES trade-offs and synergies are formulated in coastal strategic plans. The method is helpful to identify overlooked ES interrelationships, inform temporal and spatial issues, and assess the continuity of plans' attention to interrelationships. The main methodological contributions are discussed by emphasizing its broad scope of drivers and ESs and an explicit distinction among the cause of relationships. The developed method also has the potential of cross-fertilizing other kinds of approaches and facilitating practical planning processes

    Upscaling ecosystem service maps to administrative levels: beyond scale mismatches

    Get PDF
    As Ecosystem Services (ES) are the products of complex socio–ecological systems, their mapping requires a deep understanding of the spatial relationships and pattern that underpin ES provision. Upscaling ES maps is often carried out to avoid mismatches between the scale of ES assessment and that of their level of management. However, so far only a few efforts have been made to quantify how information loss occurs as data are aggregated to coarser scales. In the present study this was analyzed for three distinct case studies in the eastern Alps by comparing ES maps of outdoor recreation at the municipality level and at finer scales, i.e. high-resolution grids. Specifically, we adopt an innovative and flexible methodology based on Exploratory Spatial Data Analysis (ESDA), to disentangle the problem of the scale from the perspective of different levels of jurisdiction, by assessing in an iterative process how ES patterns change when upscaling high-resolution maps. Furthermore, we assess the sensitivity to the modifiable areal unit problem (MAUP) by calculating global statistics over three grid displacements. Our results demonstrate that spatial clusters tend to disappear when their extent becomes smaller than the features to which values are upscaled, leading to substantial information loss. Moreover, cross-comparison among grids and the municipality level highlights local anomalies that global spatial autocorrelation indicators fail to detect, revealing hidden clusters and inconsistencies among multiple scales. We conclude that, whenever ES maps are aggregated to a coarser scale, our methodology represents a suitable and flexible approach to explore clustering trends, shape and position of upscaling units, through graphs and maps showing spatial autocorrelation statistics. This can be crucial to finding the best compromise among scale mismatches, information loss and statistical bias that can directly affect the targeted ES mapping
    • 

    corecore