11 research outputs found

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    The molecular basis for the neofunctionalization of the juvenile hormone esterase duplication in Drosophila

    No full text
    The Drosophila melanogaster enzymes juvenile hormone esterase (DmJHE) and its duplicate, DmJHEdup, present ideal examples for studying the structural changes involved in the neofunctionalization of enzyme duplicates. DmJHE is a hormone esterase with precise regulation and highly specific activity for its substrate, juvenile hormone. DmJHEdup is an odorant degrading esterase (ODE) responsible for processing various kairomones in antennae. Our phylogenetic analysis shows that the JHE lineage predates the hemi/holometabolan split and that several duplications of JHEs have been templates for the evolution of secreted β-esterases such as ODEs through the course of insect evolution. Our biochemical comparisons further show that DmJHE has sufficient substrate promiscuity and activity against odorant esters for a duplicate to evolve a general ODE function against a range of mid-long chain food esters, as is shown in DmJHEdup. This substrate range complements that of the only other general ODE known in this species, Esterase 6. Homology models of DmJHE and DmJHEdup enabled comparisons between each enzyme and the known structures of a lepidopteran JHE and Esterase 6. Both JHEs showed very similar active sites despite low sequence identity (30%). Both ODEs differed drastically from the JHEs and each other, explaining their complementary substrate ranges. A small number of amino acid changes are identified that may have been involved in the early stages of the neofunctionalization of DmJHEdup. Our results provide key insights into the process of neofunctionalization and the structural changes that can be involved.This work was supported by the Australian Research Council (Future Fellowship to C.J.J.; FT140101059), Australian Science and Industry Endowment Fund (C.J.J.; PF14-099), and by an Australian Government Research Training Program Scholarship (D.H.H.)

    Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species

    Get PDF
    Background: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. Results: We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. Conclusions: The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant

    Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying tau leptons and two jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for dark matter produced in association with heavy-flavor quark pairs in proton-proton collisions at √s=13TeV

    No full text
    A search is presented for an excess of events with heavy-flavor quark pairs (tt¯ and bb¯) and a large imbalance in transverse momentum in data from proton–proton collisions at a center-of-mass energy of 13TeV. The data correspond to an integrated luminosity of 2.2fb-1 collected with the CMS detector at the CERN LHC. No deviations are observed with respect to standard model predictions. The results are used in the first interpretation of dark matter production in tt¯ and bb¯ final states in a simplified model. This analysis is also the first to perform a statistical combination of searches for dark matter produced with different heavy-flavor final states. The combination provides exclusions that are stronger than those achieved with individual heavy-flavor final states. © 2017, CERN for the benefit of the CMS collaboration

    Measurement of single-diffractive dijet production in proton–proton collisions at √s=8Te with the CMS and TOTEM experiments

    No full text
    Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss ξ and the four-momentum transfer squared t. Both processes pp→pX and pp→Xp, i.e. with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton–proton collisions at s=8Te during a dedicated run with β∗=90m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5nb-1. The single-diffractive dijet cross section σjjpX, in the kinematic region ξ< 0.1 , 0.03<|t|<1Ge2, with at least two jets with transverse momentum pT>40Ge, and pseudorapidity | η| < 4.4 , is 21.7±0.9(stat)-3.3+3.0(syst)±0.9(lumi)nb. The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of ξ, is presented as a function of x, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for x values in the range - 2.9 ≤ log 10x≤ - 1.6 , is R=(σjjpX/Δξ)/σjj=0.025±0.001(stat)±0.003(syst), where σjjpX and σjj are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons. © 2020, CERN for the benefit of the CMS and TOTEM collaborations

    Azimuthal separation in nearly back-to-back jet topologies in inclusive 2- and 3-jet events in pp collisions at √s=13Te

    No full text
    A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta, Δϕ12, is presented. The measurement considers events where the two leading jets are nearly collinear (“back-to-back”) in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of 13Te and corresponding to an integrated luminosity of 35.9fb-1 are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with the measurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region 177 ∘< Δϕ12< 180 ∘. The 2- and 3-jet measurements are not simultaneously described by any of models. © 2019, CERN for the benefit of the CMS collaboration

    Measurement of differential cross sections for Z boson production in association with jets in proton-proton collisions at √s=13TeV

    No full text
    The production of a Z boson, decaying to two charged leptons, in association with jets in proton-proton collisions at a centre-of-mass energy of 13TeV is measured. Data recorded with the CMS detector at the LHC are used that correspond to an integrated luminosity of 2.19fb-1. The cross section is measured as a function of the jet multiplicity and its dependence on the transverse momentum of the Z boson, the jet kinematic variables (transverse momentum and rapidity), the scalar sum of the jet momenta, which quantifies the hadronic activity, and the balance in transverse momentum between the reconstructed jet recoil and the Z boson. The measurements are compared with predictions from four different calculations. The first two merge matrix elements with different parton multiplicities in the final state and parton showering, one of which includes one-loop corrections. The third is a fixed-order calculation with next-to-next-to-leading order accuracy for the process with a Z boson and one parton in the final state. The fourth combines the fully differential next-to-next-to-leading order calculation of the process with no parton in the final state with next-to-next-to-leading logarithm resummation and parton showering. © 2018, CERN for the benefit of the CMS collaboration

    Measurements of triple-differential cross sections for inclusive isolated-photon+jet events in p p collisions at √s=8TeV

    No full text
    Measurements are presented of the triple-differential cross section for inclusive isolated-photon+jet events in p p collisions at s=8 TeV as a function of photon transverse momentum (pTγ), photon pseudorapidity (ηγ), and jet pseudorapidity (ηjet). The data correspond to an integrated luminosity of 19.7fb-1 that probe a broad range of the available phase space, for | ηγ| < 1.44 and 1.57 < | ηγ| < 2.50 , | ηjet| < 2.5 , 40<pTγ<1000GeV, and jet transverse momentum, pTjet, > 25GeV. The measurements are compared to next-to-leading order perturbative quantum chromodynamics calculations, which reproduce the data within uncertainties. © 2019, CERN for the benefit of the CMS collaboration

    Searches for invisible decays of the Higgs boson in pp collisions at s sqrts sqrt{s} = 7, 8, and 13 TeV

    Get PDF
    © 2017, The Author(s).Searches for invisible decays of the Higgs boson are presented. The data collected with the CMS detector at the LHC correspond to integrated luminosities of 5.1, 19.7, and 2.3 fb−1 at centre-of-mass energies of 7, 8, and 13 TeV, respectively. The search channels target Higgs boson production via gluon fusion, vector boson fusion, and in association with a vector boson. Upper limits are placed on the branching fraction of the Higgs boson decay to invisible particles, as a function of the assumed production cross sections. The combination of all channels, assuming standard model production, yields an observed (expected) upper limit on the invisible branching fraction of 0.24 (0.23) at the 95% confidence level. The results are also interpreted in the context of Higgs-portal dark matter models.[Figure not available: see fulltext.
    corecore