1,519 research outputs found

    Nanoscale characterisation of dielectrics for advanced materials and electronic devices

    Get PDF
    PhD ThesisStrained silicon (Si) and silicon-germanium (SiGe) devices have long been recognised for their enhanced mobility and higher on-state current compared with bulk-Si transistors. However, the performance and reliability of dielectrics on strained Si/strained SiGe is usually not same as for bulk-Si. Epitaxial growth of strained Si/SiGe can induce surface roughness. The typical scale of surface roughness is generally higher than bulk-Si and can exceed the device size. Surface roughness has previously been shown to impact the electrical properties of the gate dielectric. Conventional macroscopic characterisation techniques are not capable of studying localised electrical behaviour, and thus prevent an understanding of the influence of large scale surface roughness. However scanning probe microscopy (SPM) techniques are capable of simultaneously imaging material and electrical properties. This thesis focuses on understanding the relationship between substrate induced surface roughness and the electrical performance of the overlying dielectric in high mobility strained Si/SiGe devices. SPM techniques including conductive atomic force microscopy (C-AFM) and scanning capacitance microscopy (SCM) have been applied to tensile strained Si and compressively strained SiGe materials and devices, suitable for enhancing electron and hole mobility, respectively. Gate leakage current, interface trap density, breakdown behaviour and dielectric thickness uniformity have been studied at the nanoscale. Data obtained by SPM has been compared with macroscopic electrical data from the same devices and found to be in good agreement. For strained Si devices exhibiting the typical crosshatch morphology, the electrical performance and reliability of the dielectric is strongly influenced by the roughness. Troughs and slopes of the crosshatch morphology lead to degraded gate leakage and trapped charge at the interface compared with peaks on the crosshatch undulations. Tensile strained Si material which does not exhibit the crosshatch undulation exhibits improved uniformity in dielectric properties. Quantitative agreement has been found for leakage at a device-level and nanoscale, when accounting for the tip area. The techniques developed can be used to study individual defects or regions on dielectrics whether grown or deposited (including high-κ) and on different substrates including strained Si on insulator (SSOI), strained Ge on insulator (SGOI), strained Ge, silicon carbide (SiC) and graphene. Strained SiGe samples with Ge content varying from 0 to 65% have also been studied. The increase in leakage and trapped charge density with increasing Ge extracted from SPM data is in good agreement with theory and macroscopic data. The techniques appear to be very sensitive, with SCM analysis detecting other dielectric related defects on a 20% Ge sample and the effects of the 65% Ge later exceeding the critical thickness (increased defects and variability in characteristics). Further applications and work to advance the use of electrical SPM techniques are also discussed. These include anti-reflective coatings, synthetic chrysotile nanotubes and sensitivity studies.Overseas Research Students Awards Scheme (ORSAS), School International Research Scholarship (SIRS), Newcastle University International Postgraduate Scholarship (NUIPS) and the Strained Si/SiGe platform grant

    How is COVID-19 altering the manufacturing landscape? A literature review of imminent challenges and management interventions

    Get PDF
    Disruption from the COVID-19 pandemic has caused major upheavals for manufacturing, and has severe implications for production networks, and the demand and supply chains underpinning manufacturing operations. This paper is the first of its kind to pull together research on both—the pandemic-related challenges and the management interventions in a manufacturing context. This systematic literature review reveals the frailty of supply chains and production networks in withstanding the pressures of lockdowns and other safety protocols, including product and workforce shortages. These, altogether, have led to closed facilities, reduced capacities, increased costs, and severe economic uncertainty for manufacturing businesses. In managing these challenges and stabilising their operations, manufacturers are urgently intervening by—investing in digital technologies, undertaking resource redistribution and repurposing, regionalizing and localizing, servitizing, and targeting policies that can help them survive in this altered economy. Based on holistic analysis of these challenges and interventions, this review proposes an extensive research agenda for future studies to pursue

    The long-term effects of Kerala Diabetes Prevention Program on diabetes incidence and cardiometabolic risk:a study protocol

    Get PDF
    Introduction: India currently has more than 74.2 million people with Type 2 Diabetes Mellitus (T2DM). This is predicted to increase to 124.9 million by 2045. In combination with controlling blood glucose levels among those with T2DM, preventing the onset of diabetes among those at high risk of developing it is essential. Although many diabetes prevention interventions have been implemented in resource-limited settings in recent years, there is limited evidence about their long-term effectiveness, cost-effectiveness, and sustainability. Moreover, evidence on the impact of a diabetes prevention program on cardiovascular risk over time is limited. Objectives: The overall aim of this study is to evaluate the long-term cardiometabolic effects of the Kerala Diabetes Prevention Program (K-DPP). Specific aims are 1) to measure the long-term effectiveness of K-DPP on diabetes incidence and cardiometabolic risk after nine years from participant recruitment; 2) to assess retinal microvasculature, microalbuminuria, and ECG abnormalities and their association with cardiometabolic risk factors over nine years of the intervention; 3) to evaluate the long-term cost-effectiveness and return on investment of the K-DPP; and 4) to assess the sustainability of community engagement, peer-support, and other related community activities after nine years. Methods: The nine-year follow-up study aims to reach all 1007 study participants (500 intervention and 507 control) from 60 randomized polling areas recruited to the original trial. Data are being collected in two phases. In phase 1 (Survey), we are admintsering a structured questionnaire, undertake physical measurements, and collect blood and urine samples for biochemical analysis. In phase II, we are inviting participants to undergo retinal imaging, body composition measurements, and ECG. All data collection is being conducted by trained Nurses. The primary outcome is the incidence of T2DM. Secondary outcomes include behavioral, psychosocial, clinical, biochemical, and retinal vasculature measures. Data analysis strategies include a comparison of outcome indicators with baseline, and follow-up measurements conducted at 12 and 24 months. Analysis of the long-term cost-effectiveness of the intervention is planned. Discussion: Findings from this follow-up study will contribute to improved policy and practice regarding the long-term effects of lifestyle interventions for diabetes prevention in India and other resource-limited settings. Trial registration: Australia and New Zealand Clinical Trials Registry–(updated from the original trial)ACTRN12611000262909; India: CTRI/2021/10/037191.publishedVersionPeer reviewe

    Bats in the Ghats: Agricultural intensification reduces functional diversity and increases trait filtering in a biodiversity hotspot in India

    Get PDF
    The responses of bats to land-use change have been extensively studied in temperate zones and the neotropics, but little is known from the palaeotropics. Effective conservation in heavily-populated palaeotropical hotspots requires a better understanding of which bats can and cannot survive in human-modified landscapes. We used catching and acoustic transects to examine bat assemblages in the Western Ghats of India, and identify the species most sensitive to agricultural change. We quantified functional diversity and trait filtering of assemblages in forest fragments, tea and coffee plantations, and along rivers in tea plantations with and without forested corridors, compared to protected forests. Functional diversity in forest fragments and shade-grown coffee was similar to that in protected forests, but was far lower in tea plantations. Trait filtering was also strongest in tea plantations. Forested river corridors in tea plantations mitigated much of the loss of functional diversity and the trait filtering seen on rivers in tea plantations without forested corridors. The bats most vulnerable to intensive agriculture were frugivorous, large, had short broad wings, or made constant frequency echolocation calls. The last three features are characteristic of forest animal-eating species that typically take large prey, often by gleaning. Ongoing conservation work to restore forest fragments and retain native trees in coffee plantations should be highly beneficial for bats in this landscape. The maintenance of a mosaic landscape with sufficient patches of forest, shade-grown coffee and riparian corridors will help to maintain landscape wide functional diversity in an area dominated by tea plantations

    Clinical and Laboratory characteristics of patients with COVID-19 Infection and Deep Venous Thrombosis

    Get PDF
    Objective: Early reports suggest that patients with novel coronavirus disease-2019 (COVID-19) infection carry a significant risk of altered coagulation with an increased risk for venous thromboembolic events. This report investigates the relationship of significant COVID-19 infection and deep venous thrombosis (DVT) as reflected in the patient clinical and laboratory characteristics. Methods: We reviewed the demographics, clinical presentation, laboratory and radiologic evaluations, results of venous duplex imaging and mortality of COVID-19-positive patients (18-89 years) admitted to the Indiana University Academic Health Center. Using oxygen saturation, radiologic findings, and need for advanced respiratory therapies, patients were classified into mild, moderate, or severe categories of COVID-19 infection. A descriptive analysis was performed using univariate and bivariate Fisher's exact and Wilcoxon rank-sum tests to examine the distribution of patient characteristics and compare the DVT outcomes. A multivariable logistic regression model was used to estimate the adjusted odds ratio of experiencing DVT and a receiver operating curve analysis to identify the optimal cutoff for d-dimer to predict DVT in this COVID-19 cohort. Time to the diagnosis of DVT from admission was analyzed using log-rank test and Kaplan-Meier plots. Results: Our study included 71 unique COVID-19-positive patients (mean age, 61 years) categorized as having 3% mild, 14% moderate, and 83% severe infection and evaluated with 107 venous duplex studies. DVT was identified in 47.8% of patients (37% of examinations) at an average of 5.9 days after admission. Patients with DVT were predominantly male (67%; P = .032) with proximal venous involvement (29% upper and 39% in the lower extremities with 55% of the latter demonstrating bilateral involvement). Patients with DVT had a significantly higher mean d-dimer of 5447 ± 7032 ng/mL (P = .0101), and alkaline phosphatase of 110 IU/L (P = .0095) than those without DVT. On multivariable analysis, elevated d-dimer (P = .038) and alkaline phosphatase (P = .021) were associated with risk for DVT, whereas age, sex, elevated C-reactive protein, and ferritin levels were not. A receiver operating curve analysis suggests an optimal d-dimer value of 2450 ng/mL cutoff with 70% sensitivity, 59.5% specificity, and 61% positive predictive value, and 68.8% negative predictive value. Conclusions: This study suggests that males with severe COVID-19 infection requiring hospitalization are at highest risk for developing DVT. Elevated d-dimers and alkaline phosphatase along with our multivariable model can alert the clinician to the increased risk of DVT requiring early evaluation and aggressive treatmen

    Heard but not seen: Comparing bat assemblages and study methods in a mosaic landscape in the Western Ghats of India.

    Get PDF
    We used capture (mist-netting) and acoustic methods to compare the species richness, abundance, and composition of a bat assemblage in different habitats in the Western Ghats of India. In the tropics, catching bats has been more commonly used as a survey method than acoustic recordings. In our study, acoustic methods based on recording echolocation calls detected greater bat activity and more species than mist-netting. However, some species were detected more frequently or exclusively by capture. Ideally, the two methods should be used together to compensate for the biases in each. Using combined capture and acoustic data, we found that protected forests, forest fragments, and shade coffee plantations hosted similar and diverse species assemblages, although some species were recorded more frequently in protected forests. Tea plantations contained very few species from the overall bat assemblage. In riparian habitats, a strip of forested habitat on the river bank improved the habitat for bats compared to rivers with tea planted up to each bank. Our results show that shade coffee plantations are better bat habitat than tea plantations in biodiversity hotspots. However, if tea is to be the dominant land use, forest fragments and riparian corridors can improve the landscape considerably for bats. We encourage coffee growers to retain traditional plantations with mature native trees, rather than reverting to sun grown coffee or coffee shaded by a few species of timber trees

    Covariant Lagrange multiplier constrained higher derivative gravity with scalar projectors

    Full text link
    We formulate higher derivative gravity with Lagrange multiplier constraint and scalar projectors. Its gauge-fixed formulation as well as vector fields formulation is developed and corresponding spontaneous Lorentz symmetry breaking is investigated. We show that the only propagating mode is higher derivative graviton while scalar and vector modes do not propagate. Despite to higher derivatives structure of the action, its first FRW equation is the first order differential equation which admits the inflationary universe solution.Comment: Physics Letters B published version. LaTeX 12 page

    Identification of Attractive Drug Targets in Neglected-Disease Pathogens Using an In Silico Approach

    Get PDF
    In cell-based drug development, researchers attempt to create drugs that kill a pathogen without necessarily understanding the details of how the drugs work. In contrast, target-based drug development entails the search for compounds that act on a specific intracellular target—often a protein known or suspected to be required for survival of the pathogen. The latter approach to drug development has been facilitated greatly by the sequencing of many pathogen genomes and the incorporation of genome data into user-friendly databases. The present paper shows how the database TDRtargets.org can identify proteins that might be considered good drug targets for diseases such as African sleeping sickness, Chagas disease, parasitic worm infections, tuberculosis, and malaria. These proteins may score highly in searches of the database because they are dissimilar to human proteins, are structurally similar to other “druggable” proteins, have functions that are easy to measure, and/or fulfill other criteria. Researchers can use the lists of high-scoring proteins as a basis for deciding which potential drug targets to pursue experimentally
    corecore