261 research outputs found

    Self-trapping and stable localized modes in nonlinear photonic crystals

    Get PDF
    We predict the existence of stable nonlinear localized modes near the band edge of a two-dimensional reduced-symmetry photonic crystal with a Kerr nonlinearity. Employing the technique based on the Green function, we reveal a physical mechanism of the mode stabilization associated with the effective nonlinear dispersion and long-range interaction in the photonic crystal

    Self-trapping of light and nonlinear localized modes in 2D photonic crystals and waveguides

    Get PDF
    We overview our recent results on the nonlinear localized modes in two-dimensional (2D) photonic crystals and photonic-crystal waveguides. Employing the technique based on the Green function, we describe the existence domains for nonlinear guided modes in photonic crystal waveguides and study their unique properties including bistability. We also show that low-amplitude nonlinear modes near the band edge of a reduced-symmetry 2D square-lattice photonic crystals, which are usually unstable, can be stabilized due to effective long-range linear and nonlinear interactions.Comment: 20 pages (LaTeX) with 12 figures (EPS

    Low-threshold bistability of slow light in photonic-crystal waveguides

    Get PDF
    We analyze the resonant transmission of light through a photonic-crystal waveguide side coupled to a Kerr nonlinear cavity, and demonstrate how to design the structure geometry for achieving bistability and all-optical switching at ultralow powers in the slow-light regime. We show that the resonance quality factor in such structures scales inversely proportional to the group velocity of light at the resonant frequency and thus grows indefinitely in the slow-light regime. Accordingly, the power threshold required for all-optical switching in such structures scales as a square of the group velocity, rapidly vanishing in the slow-light regime

    All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures

    Get PDF
    We analyze the resonant linear and nonlinear transmission through a photonic crystal waveguide sidecoupled to a Kerr-nonlinear photonic crystal resonator. First, we extend the standard coupled-mode theory analysis to photonic crystal structures and obtain explicit analytical expressions for the bistability thresholds and transmission coefficients which provide the basis for a detailed understanding of the possibilities associated with these structures. Next, we discuss limitations of standard coupled-mode theory and present an alternative analytical approach based on the effective discrete equations derived using a Green’s function method. We find that the discrete nature of the photonic crystal waveguides allows a geometry-driven enhancement of nonlinear effects by shifting the resonator location relative to the waveguide, thus providing an additional control of resonant waveguide transmission and Fano resonances. We further demonstrate that this enhancement may result in the lowering of the bistability threshold and switching power of nonlinear devices by several orders of magnitude. Finally, we show that employing such enhancements is of paramount importance for the design of all-optical devices based on slow-light photonic crystal waveguides

    Curvature-induced symmetry breaking in nonlinear Schrodinger models

    Get PDF
    We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states decreases with increasing curvature, i.e. bending is a trap for nonlinear excitations. A violation of the Vakhitov-Kolokolov stability criterium is found in the case where the instability is due to the softening of the Peierls internal mode.Comment: 4 pages (LaTex) with 6 figures (EPS

    Low-threshold bistability of slow light in photonic-crystal waveguides

    Full text link
    We analyze the resonant transmission of light through a photonic-crystal waveguide side coupled to a Kerr nonlinear cavity, and demonstrate how to design the structure geometry for achieving bistability and all-optical switching at ultra-low powers in the slow-light regime. We show that the resonance quality factor in such structures scales inversely proportional to the group velocity of light at the resonant frequency and thus grows indefinitely in the slow-light regime. Accordingly, the power threshold required for all-optical switching in such structures scales as a square of the group velocity, rapidly vanishing in the slow-light regime.Comment: LaTeX, 6 pages, 4 figure

    Solitons in anharmonic chains with ultra-long-range interatomic interactions

    Full text link
    We study the influence of long-range interatomic interactions on the properties of supersonic pulse solitons in anharmonic chains. We show that in the case of ultra-long-range (e.g., screened Coulomb) interactions three different types of pulse solitons coexist in a certain velocity interval: one type is unstable but the two others are stable. The high-energy stable soliton is broad and can be described in the quasicontinuum approximation. But the low-energy stable soliton consists of two components, short-range and long-range ones, and can be considered as a bound state of these components.Comment: 4 pages (LaTeX), 5 figures (Postscript); submitted to Phys. Rev.

    Coupled-resonator-induced reflection in photonic-crystal waveguide structures

    Full text link
    We study the resonant transmission of light in a coupled-resonator optical waveguide interacting with two nearly identical side cavities. We reveal and describe a novel effect of the coupled-resonator-induced reflection (CRIR) characterized by a very high and easily tunable quality factor of the reflection line, for the case of the inter-site coupling between the cavities and the waveguide. This effect differs sharply from the coupled-resonator-induced transparency (CRIT) -- an all-optical analogue of the electromagnetically-induced transparency -- which has recently been studied theoretically and observed experimentally for the structures based on micro-ring resonators and photonic crystal cavities. Both CRIR and CRIT effects have the same physical origin which can be attributed to the Fano-Feshbach resonances in the systems exhibiting more than one resonance. We discuss the applicability of the novel CRIR effect to the control of the slow-light propagation and low-threshold all-optical switching.Comment: LaTeX, 11 pages, 5 figure
    • …
    corecore