222 research outputs found

    Message-Passing Multi-Cell Molecular Dynamics on the Connection Machine 5

    Full text link
    We present a new scalable algorithm for short-range molecular dynamics simulations on distributed memory MIMD multicomputer based on a message-passing multi-cell approach. We have implemented the algorithm on the Connection Machine 5 (CM-5) and demonstrate that meso-scale molecular dynamics with more than 10810^8 particles is now possible on massively parallel MIMD computers. Typical runs show single particle update-times of 0.15μs0.15 \mu s in 2 dimensions (2D) and approximately 1μs1 \mu s in 3 dimensions (3D) on a 1024 node CM-5 without vector units, corresponding to more than 1.8 GFlops overall performance. We also present a scaling equation which agrees well with actually observed timings.Comment: 17 pages, Uuencoded compressed PostScript fil

    A numerical method for computing radially symmetric solutions of a dissipative nonlinear modified Klein-Gordon equation

    Full text link
    In this paper we develop a finite-difference scheme to approximate radially symmetric solutions of the initial-value problem with smooth initial conditions in an open sphere around the origin, where the internal and external damping coefficients are constant, and the nonlinear term follows a power law. We prove that our scheme is consistent of second order when the nonlinearity is identically equal to zero, and provide a necessary condition for it to be stable order n. Part of our study will be devoted to compare the physical effects of the damping coefficients

    Statistical Mechanical Rules Underlying Annihilation and Creaton of Solitons in a Driven Non-linear Schrodinger Equation

    Get PDF
    この論文は国立情報学研究所の電子図書館事業により電子化されました

    ANELASTIC RELEASE FROM THE SHOCK-COMPRESSED STATE

    Full text link

    Solitary waves on nonlinear elastic rods. I

    Get PDF

    Static and dynamic friction in sliding colloidal monolayers

    Full text link
    In a pioneer experiment, Bohlein et al. realized the controlled sliding of two-dimensional colloidal crystals over laser-generated periodic or quasi-periodic potentials. Here we present realistic simulations and arguments which besides reproducing the main experimentally observed features, give a first theoretical demonstration of the potential impact of colloid sliding in nanotribology. The free motion of solitons and antisolitons in the sliding of hard incommensurate crystals is contrasted with the soliton-antisoliton pair nucleation at the large static friction threshold Fs when the two lattices are commensurate and pinned. The frictional work directly extracted from particles' velocities can be analysed as a function of classic tribological parameters, including speed, spacing and amplitude of the periodic potential (representing respectively the mismatch of the sliding interface, and the corrugation, or "load"). These and other features suggestive of further experiments and insights promote colloid sliding to a novel friction study instrument.Comment: in print in the Proceedings of the National Academy of Sciences U.S.A. This v2 is identical to v1, but includes ancillary material. A few figures were undersampled due to size limits: those in v1 are far sharpe
    corecore