1,210 research outputs found

    Coupled Lugiato-Lefever equation for nonlinear frequency comb generation at an avoided crossing of a microresonator

    Full text link
    Guided-mode coupling in a microresonator generally manifests itself through avoided crossings of the corresponding resonances. This coupling can strongly modify the resonator local effective dispersion by creating two branches that have dispersions of opposite sign in spectral regions that would otherwise be characterized by either positive (normal) or negative (anomalous) dispersion. In this paper, we study, both analytically and computationally, the general properties of nonlinear frequency comb generation at an avoided crossing using the coupled Lugiato-Lefever equation. In particular, we find that bright solitons and broadband frequency combs can be excited when both branches are pumped for a suitable choice of the pump powers and the detuning parameters. A deterministic path for soliton generation is found.Comment: 9 pages, 5 figure

    Spatiotemporal Model for Kerr Comb Generation in Whispering Gallery Mode Resonators

    Full text link
    We establish an exact partial differential equation to model Kerr comb generation in whispering-gallery mode resonators. This equation is a variant of the Lugiato-Lefever equation that includes higher-order dispersion and nonlinearity. This spatio-temporal model, whose main variable is the total intracavity field, is significantly more suitable than the modal expansion approach for the theoretical understanding and the numerical simulation of wide-span combs. It allows us to explore pulse formation in which a large number of modes interact cooperatively. This versatile approach can be straightforwardly extended to include higher-order dispersion, as well as other phenomena like Raman, Brillouin and Rayleigh scattering. We demonstrate for the first time that when the dispersion is anomalous, Kerr comb generation can arise as the spectral signature of dissipative cavity solitons, leading to wide-span combs with low pumping.Comment: 5 pages, 2 figure

    Solitary waves due to x(2):x(2) cascading

    Get PDF
    Solitary waves in materials with a cascaded x(2):x(2) nonlinearity are investigated, and the implications of the robustness hypothesis for these solitary waves are discussed. Both temporal and spatial solitary waves are studied. First, the basic equations that describe the x(2):x(2) nonlinearity in the presence of dispersion or diffraction are derived in the plane-wave approximation, and we show that these equations reduce to the nonlinear Schrödinger equation in the limit of large phase mismatch and can be considered a Hamiltonian deformation of the nonlinear Schrödinger equation. We then proceed to a comprehensive description of all the solitary-wave solutions of the basic equations that can be expressed as a simple sum of a constant term, a term proportional to a power of the hyperbolic secant, and a term proportional to a power of the hyperbolic secant multiplied by the hyperbolic tangent. This formulation includes all the previously known solitary-wave solutions and some exotic new ones as well. Our solutions are derived in the presence of an arbitrary group-velocity difference between the two harmonics, but a transformation that relates our solutions to zero-velocity solutions is derived. We find that all the solitary-wave solutions are zero-parameter and one-parameter families, as opposed to nonlinear-Schrödinger-equation solitons, which are a two-parameter family of solutions. Finally, we discuss the prediction of the robustness hypothesis that there should be a two-parameter family of solutions with solitonlike behavior, and we discuss the experimental requirements for observation of solitonlike behavior.Peer ReviewedPostprint (published version

    Abstracts and analysis of recent research in speech-hearing testing.

    Full text link
    Thesis (Ed.M.)--Boston Universit

    Trapping of light beams and formation of spatial solitary waves in quadratic nonlinear media

    Get PDF
    Summary form only given. In this paper we report the outcome of our comprehensive investigations to study the dynamics of the beam trapping in both bulk crystals and optical planar waveguides made of quadratic nonlinear media in second-harmonic generation configurations. We address and discuss the suitable experimental conditions required to form spatial solitary waves in critical phase-matching and quasi-phase-matching settings.Peer ReviewedPostprint (published version
    • …
    corecore