56 research outputs found

    Planar, fibre & solitonic devices

    Get PDF

    A Potential of Incoherent Attraction Between Multidimensional Solitons

    Full text link
    We obtain analytical expressions for an effective potential of interaction between two- and three-dimensional (2D and 3D) solitons (including the case of 2D vortex solitons) belonging to two different modes which are incoherently coupled by cross-phase modulation. The derivation is based on calculation of the interaction term in the full Hamiltonian of the system. An essential peculiarity is that, in the 3D case, as well as in the case of 2D solitons with unequal masses, the main contribution to the interaction potential originates from a vicinity of one or both solitons, similarly to what was recently found in the 2D and 3D single-mode systems, while in the case of identical 2D solitons, the dominating area covers all the space between the solitons. Unlike the single-mode systems,_stable_ bound states of mutually orbiting solitons are shown to be possible in the bimodal system.Comment: latex, no figures, submitted to Physics Letters

    A fractal-based fibre for ultra-high throughput optical probes

    No full text
    A core component of all scanning near-field optical microscopy (SNOM) systems is the optical probe, which has evolved greatly but still represents the limiting component for the system. Here, we introduce a new type of optical probe, based on a Fractal Fibre which is a special class of photonic crystal fibre (PCF), to directly address the issue of increasing the optical throughput in SNOM probes. Optical measurements through the Fractal Fibre probes have shown superior power levels to that of conventional SNOM probes. The results presented in this paper suggest that a novel fibre design is critical in order to maximize the potential of the SNOM

    Rotating optical soliton clusters

    Full text link
    We introduce the concept of soliton clusters -- multi-soliton bound states in a homogeneous bulk optical medium, and reveal a key physical mechanism for their stabilization associated with a staircase-like phase distribution that induces a net angular momentum and leads to cluster rotation. The ringlike soliton clusters provide a nontrivial generalization of the concepts of two-soliton spiraling, optical vortex solitons, and necklace-type optical beams.Comment: 4 pages, 5 figure

    Induced Coherence and Stable Soliton Spiraling

    Full text link
    We develop a theory of soliton spiraling in a bulk nonlinear medium and reveal a new physical mechanism: periodic power exchange via induced coherence, which can lead to stable spiraling and the formation of dynamical two-soliton states. Our theory not only explains earlier observations, but provides a number of predictions which are also verified experimentally. Finally, we show theoretically and experimentally that soliton spiraling can be controled by the degree of mutual initial coherence.Comment: 4 pages, 5 figure

    A Potential of Interaction between Two- and Three-Dimensional Solitons

    Full text link
    A general method to find an effective potential of interaction between far separated 2D and 3D solitons is elaborated, including the case of 2D vortex solitons. The method is based on explicit calculation of the overlapping term in the full Hamiltonian of the system (_without_ assuming that the ``tail'' of each soliton is not affected by its interaction with the other soliton, and, in fact,_without_ knowing the exact form of the solution for an isolated soliton - the latter problem is circumvented by reducing a bulk integral to a surface one). The result is obtained in an explicit form that does not contain an artificially introduced radius of the overlapping region. The potential applies to spatial and spatiotemporal solitons in nonlinear optics, where it may help to solve various dynamical problems: collisions, formation of bound states (BS's), etc. In particular, an orbiting BS of two solitons is always unstable. In the presence of weak dissipation and gain, the effective potential can also be derived, giving rise to bound states similar to those recently studied in 1D models.Comment: 29 double-spaced pages in the latex format and 1 figure in the ps format. The paper will appear in Phys. Rev.

    Instabilities of Higher-Order Parametric Solitons. Filamentation versus Coalescence

    Get PDF
    We investigate stability and dynamics of higher-order solitary waves in quadratic media, which have a central peak and one or more surrounding rings. We show existence of two qualitatively different behaviours. For positive phase mismatch the rings break up into filaments which move radially to initial ring. For sufficient negative mismatches rings are found to coalesce with central peak, forming a single oscillating filament.Comment: 5 pages, 7 figure

    Multi-component optical solitary waves

    Full text link
    We discuss several novel types of multi-component (temporal and spatial) envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for high performance computer networks, multi-colour parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons due to quasi-phase-matching in Fibonacci optical superlattices.Comment: 12 pages, 11 figures; To be published in: Proceedings of the Dynamics Days Asia-Pacific: First International Conference on Nonlinear Science (Hong-Kong, 13-16 July, 1999), Editor: Bambi Hu (Elsevier Publishers, 2000

    Polychromatic solitons in a quadratic medium

    Full text link
    We introduce the simplest model to describe parametric interactions in a quadratically nonlinear optical medium with the fundamental harmonic containing two components with (slightly) different carrier frequencies [which is a direct analog of wavelength-division multiplexed (WDM) models, well known in media with cubic nonlinearity]. The model takes a closed form with three different second-harmonic components, and it is formulated in the spatial domain. We demonstrate that the model supports both polychromatic solitons (PCSs), with all the components present in them, and two types of mutually orthogonal simple solitons, both types being stable in a broad parametric region. An essential peculiarity of PCS is that its power is much smaller than that of a simple (usual) soliton (taken at the same values of control parameters), which may be an advantage for experimental generation of PCSs. Collisions between the orthogonal simple solitons are simulated in detail, leading to the conclusion that the collisions are strongly inelastic, converting the simple solitons into polychromatic ones, and generating one or two additional PCSs. A collision velocity at which the inelastic effects are strongest is identified, and it is demonstrated that the collision may be used as a basis to design a simple all-optical XOR logic gate.Comment: 9 pages, 8 figures, accepted to Phys. Rev.
    corecore