186 research outputs found

    What life course theoretical models best explain the relationship between exposure to childhood adversity and psychopathology symptoms: Recency, accumulation, or sensitive periods?

    Get PDF
    Copyright © Cambridge University Press 2018Â. Background Although childhood adversity is a potent determinant of psychopathology, relatively little is known about how the characteristics of adversity exposure, including its developmental timing or duration, influence subsequent mental health outcomes. This study compared three models from life course theory (recency, accumulation, sensitive period) to determine which one(s) best explained this relationship.Methods Prospective data came from the Avon Longitudinal Study of Parents and Children (n = 7476). Four adversities commonly linked to psychopathology (caregiver physical/emotional abuse; sexual/physical abuse; financial stress; parent legal problems) were measured repeatedly from birth to age 8. Using a statistical modeling approach grounded in least angle regression, we determined the theoretical model(s) explaining the most variability (r2) in psychopathology symptoms measured at age 8 using the Strengths and Difficulties Questionnaire and evaluated the magnitude of each association.Results Recency was the best fitting theoretical model for the effect of physical/sexual abuse (girls r2 = 2.35%; boys r2 = 1.68%). Both recency (girls r2 = 1.55%) and accumulation (boys r2 = 1.71%) were the best fitting models for caregiver physical/emotional abuse. Sensitive period models were chosen alone (parent legal problems in boys r2 = 0.29%) and with accumulation (financial stress in girls r2 = 3.08%) more rarely. Substantial effect sizes were observed (standardized mean differences = 0.22-1.18).Conclusions Child psychopathology symptoms are primarily explained by recency and accumulation models. Evidence for sensitive periods did not emerge strongly in these data. These findings underscore the need to measure the characteristics of adversity, which can aid in understanding disease mechanisms and determining how best to reduce the consequences of exposure to adversity

    Durvalumab in Combination with Olaparib in Patients with Relapsed SCLC: Results from a Phase II Study

    Get PDF
    Purpose: Despite high tumor mutationburden, immune checkpoint blockade has limited efficacy in SCLC. We hypothesized that poly (ADP-ribose) polymerase inhibition could render SCLC more susceptible to immune checkpoint blockade. Methods: A single-arm, phase II trial (NCT02484404) enrolled patients with relapsed SCLC who received durvalumab, 1500 mg every 4 weeks, and olaparib, 300 mg twice a day. The primary outcome was objective response rate. Correlative studies included mandatory collection of pretreatment and during-treatment biopsy specimens, which were assessed to define SCLC immunephenotypes: desert (CD8-positive T-cell prevalence low), excluded (CD8-positive T cells in stroma immediately adjacent/within tumor), and inflamed (CD8-positive T cells in direct contact with tumor). Results: A total of 20 patients were enrolled. Their median age was 64 years, and most patients (60%) had platinum-resistant/refractory disease. Of 19 evaluable patients, two were observed to have partial or complete responses (10.5%), including a patient with EGFR-transformed SCLC. Clinical benefit was observed in four patients (21.1% [95% confidence interval: 6.1%–45.6%]) with confirmed responses or prolonged stable disease (≥8 months). The most common treatment-related adverse events were anemia (80%), lymphopenia (60%), and leukopenia (50%). Nine of 14 tumors (64%) exhibited an excluded phenotype; 21% and 14% of tumors exhibited the inflamed and desert phenotypes, respectively. Tumor responses were observed in all instances in which pretreatment tumors showed an inflamed phenotype. Of the five tumors without an inflamed phenotype at baseline, no during-treatment increase in T-cell infiltration or programmed death ligand 1 expression on tumor-infiltrating immune cells was observed. Conclusions: The study combination did not meet the preset bar for efficacy. Pretreatment and during-treatment biopsy specimens suggested that tumor immune phenotypes may be relevant for SCLC responses to immune checkpoint blockade combinations. The predictive value of preexisting CD8-positive T-cell infiltrates observed in this study needs to be confirmed in larger cohorts

    Genomic deletion and promoter methylation status of Hypermethylated in Cancer 1 (HIC1) in mantle cell lymphoma

    Get PDF
    Mantle cell lymphomas (MCL), characterized by the t(11;14)(q13;q32), frequently carry secondary genetic alterations such as deletions in chromosome 17p involving the TP53 locus. Given that the association between TP53-deletions and concurrent mutations of the remaining allele is weak and based on our recent report that the Hypermethylated in Cancer 1 (HIC1) gene, that is located telomeric to the TP53 gene, may be targeted by deletions in 17p in diffuse large B-cell lymphoma (DLBCL), we investigated whether HIC1 inactivations might also occur in MCL. Monoallelic deletions of the TP53 locus were detected in 18 out of 59 MCL (31%), while overexpression of p53 protein occurred in only 8 out of 18 of these MCL (44%). In TP53-deleted MCL, the HIC1 gene locus was co-deleted in 11 out of 18 cases (61%). However, neither TP53 nor HIC1 deletions did affect survival of MCL patients. In most analyzed cases, no hypermethylation of the HIC1 exon 1A promoter was observed (17 out of 20, 85%). However, in MCL cell lines without HIC1-hypermethylation, the mRNA expression levels of HIC1 were nevertheless significantly reduced, when compared to reactive lymph node specimens, pointing to the occurrence of mechanisms other than epigenetic or genetic events for the inactivation of HIC1 in this entity

    Gene expression profiling of alveolar soft-part sarcoma (ASPS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alveolar soft-part sarcoma (ASPS) is an extremely rare, highly vascular soft tissue sarcoma affecting predominantly adolescents and young adults. In an attempt to gain insight into the pathobiology of this enigmatic tumor, we performed the first genome-wide gene expression profiling study.</p> <p>Methods</p> <p>For seven patients with confirmed primary or metastatic ASPS, RNA samples were isolated immediately following surgery, reverse transcribed to cDNA and each sample hybridized to duplicate high-density human U133 plus 2.0 microarrays. Array data was then analyzed relative to arrays hybridized to universal RNA to generate an unbiased transcriptome. Subsequent gene ontology analysis was used to identify transcripts with therapeutic or diagnostic potential. A subset of the most interesting genes was then validated using quantitative RT-PCR and immunohistochemistry.</p> <p>Results</p> <p>Analysis of patient array data versus universal RNA identified elevated expression of transcripts related to angiogenesis (ANGPTL2, HIF-1 alpha, MDK, c-MET, VEGF, TIMP-2), cell proliferation (PRL, IGFBP1, NTSR2, PCSK1), metastasis (ADAM9, ECM1, POSTN) and steroid biosynthesis (CYP17A1 and STS). A number of muscle-restricted transcripts (ITGB1BP3/MIBP, MYF5, MYF6 and TRIM63) were also identified, strengthening the case for a muscle cell progenitor as the origin of disease. Transcript differentials were validated using real-time PCR and subsequent immunohistochemical analysis confirmed protein expression for several of the most interesting changes (MDK, c-MET, VEGF, POSTN, CYP17A1, ITGB1BP3/MIBP and TRIM63).</p> <p>Conclusion</p> <p>Results from this first comprehensive study of ASPS gene expression identifies several targets involved in angiogenesis, metastasis and myogenic differentiation. These efforts represent the first step towards defining the cellular origin, pathogenesis and effective treatment strategies for this atypical malignancy.</p

    The Genetic Basis of Hepatosplenic T-cell Lymphoma

    Get PDF
    Hepatosplenic T cell lymphoma (HSTL) is a rare and lethal lymphoma; the genetic drivers of this disease are unknown. Through whole exome sequencing of 68 HSTLs, we define recurrently mutated driver genes and copy number alterations in the disease. Chromatin modifying genes including SETD2, INO80 and ARID1B were commonly mutated in HSTL, affecting 62% of cases. HSTLs manifest frequent mutations in STAT5B (31%), STAT3 (9%), and PIK3CD (9%) for which there currently exist potential targeted therapies. In addition, we noted less frequent events in EZH2, KRAS and TP53. SETD2 was the most frequently silenced gene in HSTL. We experimentally demonstrated that SETD2 acts as a tumor suppressor gene. In addition, we found that mutations in STAT5B and PIK3CD activate critical signaling pathways important to cell survival in HSTL. Our work thus defines the genetic landscape of HSTL and implicates novel gene mutations linked to HSTL pathogenesis and potential treatment targets

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Biological therapy of cancer

    Full text link
    Interferons and monoclonal antibodies are among the most promising biological approaches to cancer treatment which have so far been investigated. Both natural and recombinant interferon-alpha preparations have shown activity in a number of trials in hematologic malignancies, even in previously treated patients; activity in solid tumors, however, has been limited. Unconjugated monoclonal antibodies have been safely administered in several small trials and have had therapeutic value on occasion. In spite of a number of remaining problems and questions, monoclonal antibodies and their conjugates seem likely to find a number of distinct roles in cancer treatment; elimination of micrometastases and purging of bone marrow for grafting may be among these roles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44207/1/10549_2005_Article_BF01886730.pd
    corecore