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Purpose—AZD6244 is a MEK1/2 inhibitor with significant preclinical activity in multiple 

myeloma (MM) cells. This phase 2 study used a two-stage Simon design to determine the 

AZD6244 response rate in patients with relapsed or refractory MM.

Experimental Design—AZD6244 (75 mg) was administered orally, twice a day, continuously 

for 28-day cycles. Response was evaluated after 3 cycles.

Results—Thirty-six patients received therapy. The median age was 65 years (range: 43–81) and 

the median number of prior therapies was 5 (range: 2–11). The most common grade 3 and 4 

toxicities included anemia, neutropenia, thrombocytopenia, diarrhea, and fatigue. Three deaths 

occurred possibly related to AZD6244 (2 due to sepsis, 1 due to acute kidney injury). After 

AZD6244 discontinuation, 3 additional deaths occurred due to disease progression. The response 

rate (CR + PR) was 5.6% with a mean duration of response of 4.95 months and median 

progression-free survival time of 3.52 months. One patient had a very good partial response 

(VGPR), 1 patient had a partial response, 17 patients had stable disease, 13 patients had 

progressive disease, and 4 patients could not be assessed for response. Pharmacodynamic studies 

revealed variable effects on bone marrow CD138+ cell MEK1/2 and ERK1/2 phosphorylation. 

The best clinical response, a prolonged VGPR, occurred in a patient with an MMSET 

translocation.

Conclusions—Single-agent AZD6244 was tolerable and had minimal activity in this heavily 

pre-treated population.
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Introduction

Multiple myeloma (MM) is a plasma cell neoplasm that accounts for 10% of all hematologic 

malignancies. There have been substantial improvements in survival in recent years, 

particularly for younger patients (1), much of which may be attributed to the advent of novel 

therapies (2). Improved response rates in the relapsed/refractory setting, translating to 

benefits in overall survival, have been seen with the proteasome inhibitor bortezomib (3, 4) 

and the immunomodulatory drugs thalidomide (5, 6) and lenalidomide (7, 8). Despite these 

advances, MM generally remains incurable and requires better therapies.

Gene expression profiling has defined 7 molecularly distinct MM subgroups that are 

associated with different clinical outcomes (9–11). Four of these subgroups are 

characterized by the presence of recurrent translocations of an oncogene into the heavy 

chain immunoglobulin locus (IgH) (11, 12). Among these is the MMSET/FGFR3 subgroup 

(bearing the 4;14 translocation), which is associated with inferior progression-free and 

overall survival (13).

AZD6244 is a potent, selective, adenosine triphosphate (ATP)-non-competitive inhibitor of 

mitogen-activated protein kinase kinase (MEK) 1 and 2 (14). Activation of the mitogen-

activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, 

among others, mediates MM cell proliferation, survival, migration, and drug resistance (15). 
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Multiple growth signals such as interleukin-6 (16), FGF (17), IGF-1 (18), and RAS (19) 

converge upon the MEK pathway to enhance the survival, proliferation, and migration of 

MM cells.

In preclinical studies, AZD6244 inhibited proliferation and survival of human MM cells, 

regardless of sensitivity to conventional chemotherapy (20), and blocked osteoclast 

differentiation, function, and cytokine secretion, thereby abrogating paracrine MM cell 

survival in the bone marrow microenvironment (21). AZD6244 also inhibited tumor growth 

and prolonged survival in vivo in a human plasmacytoma xenograft model (20).

Phase 1 trials in patients with advanced cancer found the recommended phase 2 dose of the 

free-base suspension of AZD6244 to be 100 mg (22) and the maximum-tolerated dose of the 

hydrogen-sulfate capsule to be 75 mg (23), with both doses administered orally twice-daily.

The present trial was prompted by several considerations. First, AZD6244 has shown 

significant in vivo activity in mouse xenograft models of human MM (20). Second, it has 

been reported that MM cells overexpressing Maf, either as a consequence of a Maf or an 

MMSET translocation, may be particularly sensitive to MEK1/2 inhibitors (24). Finally, our 

group has demonstrated that inactivation of the MEK1/2/ERK1/2 pathway by AZD6244 

markedly increases the susceptibility of MM cells to other targeted agents (e.g., Chk1 

inhibitors) (25). However, pursuit of this or other combination strategies requires initial 

assessment of the single-agent activity of AZD6244 in MM. Accordingly, the Southeast 

Phase 2 Consortium conducted a phase 2 study of AZD6244 in patients with relapsed or 

refractory MM. The primary objective was to assess the response rate; secondary objectives 

included assessment of toxicity, progression-free survival, duration of response, and 

performance of correlative pharmacodynamic studies (e.g., pERK1/2 down-regulation). An 

additional goal was to determine whether molecularly defined MM sub-types might be 

particularly responsive to this agent, as observed in preclinical studies (24).

Patients and methods

Drug sources and formulation

AZD6244 hydrogen sulfate was supplied, under a Collaborative Agreement between 

AstraZeneca Pharmaceuticals and CTEP NCI, as 25-mg hydroxypropylmethylcellulose 

capsules. Each capsule contained a dispersion of AZD6244 hydrogen sulfate in D-α-

tocopheryl polyethylene glycol 1000 succinate (a water-soluble form of vitamin E).

Eligibility criteria

Eligible patients had a confirmed diagnosis of MM with measurable relapsed or refractory 

disease following at least 2 prior therapies, were at least 18 years of age, and had an Eastern 

Cooperative Oncology Group (ECOG) performance status of 2 or less.

Additional eligibility criteria included an absolute neutrophil count ≥ 1,000 mm3 

(independent of blood cell growth factors), a platelet count of ≥ 75,000 mm3 (independent of 

blood cell growth factors or transfusion), a total bilirubin level ≤ 1.5 × the upper limit of 

normal (ULN), aspartate aminotransferase/alanine aminotransferase < 2.5 × the ULN, a 
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creatinine level < 3 × the ULN, and a pulse oximetry of ≥ 95% on room air. Prior autologous 

stem cell transplant (SCT) was allowed, and prior allogeneic SCT was allowed if ≥ 6 months 

had elapsed since transplant, the patient did not have graft-versus-host disease, and the 

patient was not on immunosuppressive therapy.

Individuals were excluded from the study if they had known MM of the central nervous 

system; uncontrolled hypertension or significant cardiovascular disease; other malignancy, 

unless they had been disease-free for a year or more; uncontrolled intercurrent illness; a left-

ventricular ejection fraction of ≤ 45%; refractory nausea and vomiting, chronic 

gastrointestinal diseases, or significant bowel resection; or a history of prior MEK-inhibitor 

use or history of allergic reactions attributed to compounds of similar chemical or biologic 

composition to AZD6244.

Treatment plan

This was a prospective, multicenter, non-randomized phase 2 study using a Simon two-stage 

design. AZD6244 capsules were administered at a dose of 75 mg twice-daily, approximately 

12 hours apart (total daily dose 150 mg). Treatment cycles were 28 days.

Dose modifications

Doses were omitted and sequentially reduced for treatment-related adverse events, as 

defined in the protocol. The first dose reduction level was 50 mg twice-daily and the second 

dose reduction level was 50 mg once-daily. Dose reescalation was not permitted.

Response and toxicity assessment

Adverse events were graded and reported according to National Cancer Institute Common 

Terminology Criteria for Adverse Events version 4.0. All patients were considered evaluable 

for toxicity from the time of their first treatment with AZD6244. All treated patients were to 

be evaluated for response. Response criteria used were from the International Myeloma 

Working Group Uniform Criteria for Multiple Myeloma (26).

CD138+ cell isolation

In consenting patients, bone marrow samples were obtained before and approximately 24 

hours after the first dose of AZD6244. At least 10 mL of bone marrow aspirate was used to 

isolate CD138+ cells with anti-CD138 magnetic-activated cell separation microbeads 

(Miltenyi Biotec, San Diego, CA). CD138+ cell purity (≥ 90%) was determined by flow 

cytometry.

RT-PCR to detect IgH-MMSET

Total RNA was isolated using TRIZOL (Life Technologies, Carlsbad, CA), and 

contaminating DNA was removed using DNA-free DNase treatment (Life Technologies). 

RNA integrity was verified using the RNA Pico Assay on an Agilent 2100 Bioanalyzer 

(Agilent Technologies, Santa Clara, CA). cDNA synthesis was performed using a High-

Capacity cDNA RT Kit (Life Technologies) and validated by detection of c-MYC. PCR 

amplifications were made with specific primers: 5’-
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AGCCCTTGTTAATGGACTTGGAGG-3’ (sense), nucleotides 4775–4798 of JH-5’sigmaµ; 

and 5’-CCTCAATTTCCCTGAAATTGGTT-3’ (antisense), nucleotides 986–964 of 

MMSET exon 6. The products of the reaction were separated on a 1.2% agarose gel.

PCR amplification and pyrosequencing

Genomic DNA was isolated using the DNeasy Blood & Tissue Kit on a QIAcube instrument 

(Qiagen, Valencia, CA). Targeted analyses for BRAF-mutation hotspots at codons 599–601 

(27); KRAS at codons 12, 13, and 61 (PyroMark Q24 KRAS v2.0 Kit, Qiagen); and NRAS at 

codons 12, 13, 18, and 61 were performed using pyrosequencing on a PyroMark Q24 

instrument (Qiagen). NRAS pyrosequencing assays were designed using PyroMark Assay 

Design v2.0 (Qiagen). Genomic DNA was amplified using COLD-PCR (28) to increase 

mutation-detection sensitivity. Briefly, PCR reactions were conducted in a total volume of 

25 µL containing 10-ng genomic DNA template. The resulting PCR product (10 µL) was 

immobilized on streptavidin-coated Sepharose beads (GE Healthcare, Piscataway, NJ) and 

prepared for the pyrosequencing reactions, according to the manufacturer’s instructions.

Nano-fluidic proteomic immunoassay (NanoPro)

CD138+ cells were lysed with M-Per buffer (Thermo Fisher Scientific, Rockford, IL) 

containing phosphatase and protease inhibitors. Approximately 50–72 ng of protein was 

used per sample, and experiments were performed using a Nanopro1000 instrument 

(ProteinSimple, Santa Clara, CA), as previously described (29, 30). Various phosphorylated 

isoforms of MEK and ERK were detected using anti-phospho-ERK (Cell Signaling 

Technology, Danvers, MA), anti-MEKpS218/222 (Epitomics, Burlingame, CA), anti-

MEKpT292 (Millipore), anti-MEKpT386 (Novus Biologicals, Littleton, CO), anti-

MEKpT394 (Abcam, Cambridge, MA), anti-MEKpS298 (Cell Signaling Technology), and 

anti-Beta2-microglobulin (Abcam) primary antibodies with HRP-conjugated goat anti-rabbit 

or goat anti-mouse (Jackson ImmunoResearch Laboratories, West Grove, PA) secondary 

antibodies. Luminol and peroxide (ProteinSimple) were added to generate chemiluminescent 

light. The digital images were analyzed and quantified with Compass software 

(ProteinSimple). ERK and MEK were normalized to Beta2-microglobulin loading controls.

Statistical analysis

The primary endpoint of this study was overall response rate (stringent complete response 

[sCR] + complete response [CR] + very good partial response [VGPR] + partial response 

[PR]) to AZD6244 among patients with relapsed/refractory MM. A true response rate of 

20% was considered promising in this population, whereas a true response rate of 5% would 

not be worthy of further investigation. A Simon two-stage design allowed for early 

termination if there was strong evidence that the regimen was inactive. In the first stage, ≥ 1 

response in the first 12 patients would lead to accrual of 25 additional patients. If ≥ 4 

responses were observed among 37 patients, the treatment would be declared effective. 

Endpoints were summarized by descriptive statistics (frequency, proportion, median, and/or 

range). All assays for pharmacodynamics were done in triplicate. Statistical significance was 

determined using a Student t test and a P value < .05.
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Human investigation studies

The study was performed after Institutional Review Board approval in accordance with an 

assurance filed with and approved by the Department of Health and Human Services. 

Informed written consent was obtained from each patient before enrollment in the study. 

This trial is registered at www.clinicaltrials.gov as NCT01085214.

Results

Patient characteristics

Thirty-seven patients were enrolled. One patient was enrolled but never initiated study 

therapy. Thirty-six patients, 18 female and 18 male, were treated at 6 study sites. The 

median age was 65 years (range: 43–81 years). In general, patients were heavily pre-treated 

with conventional MM therapies. The median number of prior therapies was 5 (range: 2–11) 

(Table 1).

Patients received a median of 3 cycles of study treatment, with a range of 1–14 cycles per 

patient. A total of 12 patients consented to correlative testing of bone marrow aspirate, and 

11 samples proved sufficient for pharmacodynamic analysis.

Clinical response

For the 36 evaluable patients, the response rate (CR + PR) was 5.6% with a mean duration 

of response of 4.95 months and median progression-free survival time of 3.52 months. One 

patient in Stage 1 of the Simon two-stage design experienced a VGPR. This patient had 

received 4 lines of prior therapy, including an autologous SCT. Assessment after 3 cycles 

was significant for more than a 50% size reduction of a plasmacytoma by physical exam 

(from 4 to 0.5 cm), and after cycle 6 a documented VGPR was achieved with a duration of 

response of 5.06 months. One patient in Stage 2 of the Simon two-stage design experienced 

a PR after 2 cycles of treatment with a duration of response of 4.83 months. This patient had 

received 6 lines of prior therapy, including an autologous SCT. Seventeen patients had a 

best response of stable disease (SD) with a median duration of 2.3 months, 13 had 

progressive disease (PD), and 4 were not assessed for response. Of the 4 patients not 

assessed for response, 1 withdrew from the study after cycle 1, 1 discontinued treatment in 

cycle 1 due to grade 3 neuropathy, and 2 died in cycle 1 before response assessment. All 

response categories required 2 consecutive assessments (2 cycles).

Toxicities

The most common grade 3 and 4 hematologic toxicities included anemia, neutropenia, 

thrombocytopenia, diarrhea, and fatigue (Table 2). Additional commonly occurring grade 2 

toxicities included increased creatine phosphokinase, limb edema, and acneiform rash 

(Table 2).

Three grade 5 events occurred during treatment (Table 2). One patient died secondary to 

acute kidney injury and 2 patients died secondary to infectious complications (sepsis). All 3 

deaths were judged to be possibly related to study treatment. Three additional patients died 

due to disease progression during study follow-up.

Holkova et al. Page 6

Clin Cancer Res. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.clinicaltrials.gov


Of the 36 patients who received treatment, 10 (28%) received less than 85% of the cycle 1 

planned dose (4,200 mg = 75 mg/dose × 2 dose/day × 28 day). Treatment for 5 of these 

patients was discontinued in the first cycle due to death (2 patients), disease progression (2 

patients), and grade 3 neuropathy (1 patient). The other 5 patients received less than 85% of 

the planned treatment dose due to dose modifications, although each of these patients 

continued to receive a minimum of a second cycle of treatment.

Candidate genes and pharmacodynamic markers

Analysis of the RAS/ERK/MEK pathway—Whole genome-based sequencing (31) in 

previous studies of CD138+ bone marrow cells from MM patients detected a high frequency 

of mutations in genes that modulate activation of the MAPK pathway, particularly the RAS 

and BRAF genes. To investigate the status of RAS and BRAF, pyrosequencing was 

performed using DNA extracted from CD138+ cells isolated from bone marrow aspirates 

obtained from 10 patients. Three patients carried a mutation in KRAS: #1 (VGPR), #6 (SD), 

and #10 (PD), and 2 patients carried an NRAS mutation: #2 (PR) and #8 (PD). Mutations in 

the BRAF gene were found in 1 patient: #9 (PD) (Supplementary Table S1).

MMSET translocation in primary MM tumor cells

MMSET/FGFR3 and MAF myeloma cell lines are dependent on MEK signaling for growth 

and survival (24). Among 11 patients, an IgH-MMSET hybrid transcript (indicative of an 

MMSET translocation into the immunoglobulin locus) was detected in one patient (#1) using 

RT-PCR (Figure 1). This patient, enrolled with an extramedullary plasmacytoma in the 

inguinal region, had a VGPR after 6 cycles (6 months) of treatment and remained on therapy 

for an additional 2 cycles (a total of 8 cycles) before experiencing disease progression. The 

patient’s plasmacytoma decreased by more than 50% after 3 cycles of AZD6244 therapy and 

was not detectable by physical exam after 6 cycles.

Phospho-MEK1/2 and ERK1/2 isoforms as markers of therapeutic response

Activation of MEK kinase results in phosphorylation of ERK kinase (32). To further 

investigate the efficacy of MEK inhibition, nanoscale proteomic technology (NanoPro) (29) 

was employed to analyze the phosphorylation profile of MEK1/2 isoforms in CD138+ cells 

from bone marrow samples of 5 patients (#1, #2, #3, #4, and #9) obtained at baseline and 

approximately 24 hours after initiation of treatment with AZD6244 (Figure 2). Down-

regulation of low baseline levels of pT386, pT292, pS298, and pS218/222 MEK1 isoforms 

(Figure 2A) and pT394, pS222, and pT394 pS226 MEK2 isoforms (Figure 2B) was 

observed in only 1 of the 5 patients (#3), whose best response was SD.

In addition, levels of mono-phospho-ERK1/2 (pERK1/2) and dual-phospho-ERK1/2 

(ppERK1/2) were determined using the NanoPro-immunoassay (Figure 3) in the same 

samples. In cells from patient #1, who had a positive clinical response to AZD6244 (VGPR), 

elevated baseline levels pERK1/2 and ppERK1/2 substantially decreased 24 hours after 

AZD6244 treatment (Figure 3). Cells from patient #2 (PR) exhibited diminished levels of 

ppERK1 (Figure 3A) and ppERK2 post-treatment (Figure 3C). Additionally, for #4 (SD) 

down-regulation of ppERK2 (Figure 3C) and pERK2 (Figure 3D) was noted. In #9 (PD), 

low levels of ppERK2 at baseline were down-regulated 24 hours after AZD6244 treatment 
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(Figure 3C). pERK1/2 and ppERK1/2 were upregulated in post-treatment samples compared 

to pre-treatment samples in patient #3 (SD).

Discussion

Therapeutic approaches involving novel targeted pathways continue to be explored for MM. 

One such approach involves targeting the MEK/ERK cascade, a pathway that mediates 

proliferation, survival, migration, and drug resistance in MM cells. AZD6244, an inhibitor 

of MEK1/2, (14) has been shown to induce apoptosis of MM cells in vitro (20) and to inhibit 

MM cell growth in a human plasmacytoma xenograft model (20). Furthermore, MEK1/2 

inhibition has been shown in preclinical studies to potentiate the anti-myeloma activity of 

both conventional (33, 34) and targeted agents (e.g., Chk1 inhibitors) (35). In addition to 

these considerations, translocation/up-regulation of the transcriptional activator MAF, which 

occurs in 30–40% of MM patients, has recently been associated with increased MEK1/2 

inhibitor sensitivity (24). Prompted by these findings, and as a follow-up to previously 

published phase 1 clinical trials of AZD6244 in patients with advanced cancer (22, 23, 36), a 

phase 2 clinical trial of AZD6244 for the treatment of patients with advanced MM was 

undertaken. The goals of this study were to obtain an initial estimation of the single-agent 

activity of AZD6244 in patients with relapsed/refractory MM, and to gain insights into 

candidate biomarkers and correlative pharmacodynamic indicators that might predict disease 

responsiveness.

Anemia, neutropenia, thrombocytopenia, diarrhea, and fatigue were the most common grade 

3 and 4 toxicities observed. Some unexpected grade 2 toxicities were observed (Table 2). 

There were 3 grade 5 events that were deemed to be possibly related to study treatment; 2 

patients died of sepsis, and one patient died of acute kidney injury. The toxicities observed 

in this trial were unanticipated based on previously reported studies in solid tumors, with the 

exception of a recent phase 2 trial employing AZD6244 in metastatic uveal melanoma 

compared to chemotherapy. In that trial, AZD6244 was associated with greater toxicity 

compared to chemotherapy (37). Immunosuppression in the present heavily pre-treated 

patient population, could potentially account for or contribute to the observed grade 3 

neutropenias and febrile neutropenias. Based upon these findings, possible considerations 

for future trials might be to limit the number of prior allowable therapies, to use an alternate 

dosing schedule, and to intensify supportive measures.

The best clinical response observed among the 36 patients receiving therapy was a VGPR 

achieved by 1 patient. One other patient had a best response of PR. At the outset of this 

study, a true response rate of 20% was set as the minimal response needed to warrant further 

study of AZD6244 as a single agent. Consequently, 4 or more responses would need to be 

obtained among 37 patients. This threshold was not met, with 2 responses seen among the 

36 treated patients. The results of this trial indicate that AZD6244 as a monotherapy has 

relatively minimal activity in patients with relapsed/refractory MM. Nevertheless, the 

prolonged VGPR response in a heavily pre-treated patient (e.g., 4 lines of prior therapy 

including autologous SCT) with an aggressive, poor-prognosis extramedullary 

plasmacytoma, and the PR in a patient with 6 lines of prior therapy are noteworthy.
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AZD6244 is a highly specific MEK inhibitor that locks MEK in an inactive conformation. In 

solid tumor cell lines, it has been shown that mutations in RAS or BRAF genes increase 

sensitivity to MEK inhibition (38, 39). To determine whether RAS or BRAF gene mutations 

correlate with the clinical activity of AZD6244, the presence of mutations in these genes 

was monitored in samples from 11 patients. KRAS mutations were detected in 3 patients 

(27%), NRAS mutations in 2 patients (18%), and BRAF mutations in 1 (9%). These results 

are consistent with recent whole genome-based sequencing data for 38 patients (31), of 

which 50% of patients had mutations of RAS and 4% had mutations in BRAF. For patients 

with KRAS mutations, 1 patient had a best response of VGPR (#1), 1 had SD (#6), and 1 had 

PD (#10). For patients with NRAS mutations, 1 patient had a PR (#2) and 1 patient had PD 

(#8). The patient with the BRAF mutation had PD. However, the relatively small number of 

samples available for analysis, as well as the minimal response rate encountered, made it 

impossible to determine with certainty the influence of RAS/BRAF mutations on sensitivity 

to AZD6244 treatment in this trial. Clearly, larger series will be required to establish 

whether NRAS or KRAS mutations are of value in predicting outcomes in MM patients 

receiving MEK inhibitor or MEK inhibitor-based regimens.

The recurrent chromosomal translocation t(4;14) is detected in 20% of MM patients and is 

associated with a shortened overall survival (40). The t(4;14) translocation transposes 

immunoglobulin heavy chain region enhancer elements to the 5′ end of MMSET to drive its 

ectopic expression (41). An MMSET translocation, reflected by the presence of the IgH-

MMSET hybrid transcript, was detected in a single patient who, significantly, achieved a 

VGPR in cycle 6 (# 1) (Figure 1). Because of the limited number of MMSET aberrations 

identified, it is impossible to conclude whether this translocation might be related to a 

positive clinical outcome. Nevertheless, it is tempting to speculate that patients with this 

aberration, possibly in association with a KRAS mutation, might be particularly appropriate 

for MEK-inhibitor therapy. Validation of this notion will clearly require testing in 

considerably larger patient cohort.

To investigate the efficacy of MEK inhibition, the phosphorylation profile of MEK1/2 

isoforms was analyzed in CD138+ cells obtained from 5 patients (#1, #2, #3, #4, and #9) 

(Figure 2). Using nanoscale proteomic technology (NanoPro), baseline bone marrow 

samples were compared to samples obtained 24 hours after initiation of treatment with 

AZD6244, to measure the response to the MEK inhibition of phosphorylation. NanoPro is a 

capillary-based iso-electrical immunoassay system that separates proteins according to their 

charge, and consequently various target protein isoforms can be detected with a single 

antibody. The capillary platform also allows the use of nanogram amounts of material for 

protein analysis. Post-treatment down-regulation of phospho-MEK1/2 was not observed, but 

other studies have yielded similar results (42, 43) wherein up-regulation of p-MEK was 

reported upon MEK-inhibitor treatment, suggesting negative feedback between ERK and 

RAF. It has also been reported that Cdk-5 phosphorylation of MEK1 results in the inhibition 

of MEK1 catalytic activity and the phosphorylation of ERK1/2 (44). Elevated levels of 

phosphorylated MEK1/2 after treatment with AZD6244 could also potentially reflect the 

ability of this agent to activate a signaling pathway upstream of MEK.
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Pre- and post-treatment pERK1/2 and ppERK1/2 profiles were also analyzed using the 

NanoPro-immunoassay (Figure 3). In the patient who had a positive clinical response to 

AZD6244 (VGPR) (#1), levels of pERK1/2 and ppERK1/2 (at baseline) significantly 

decreased after treatment (Figure 3). For patient #2 (PR) diminished levels of ppERK1 

(Figure 3A) and ppERK2 were observed (Figure 3C). Either up-regulation or no change in 

phospho-ERK1/2 in post-treatment samples compared to pre-treatment samples was 

observed for the remaining patients. Although samples from the 2 patients (#1 - VGPR and 

#2 - PR) showed down-regulation of phosphorylated ERK, the number of samples is too 

small for definitive correlations between phosphorylated ERK status and treatment outcome 

to be made. In this context, other clinical studies have shown that the presence of activated 

ERK and the suppression of ERK activation are insufficient to predict outcome of treatment 

with MEK inhibitors (45). Nevertheless, the present studies document the feasibility of 

monitoring ERK1/2 phosphorylation status employing the NanoPro-Immunoassay. It is also 

possible that such correlative studies may be of predictive value in future combination 

studies involving MEK1/2 inhibitors in MM.

In summary, among this group of relapsed MM patients, single-agent AZD6244 resulted in 

only minimal responses. Although this study does not support the continued study of 

AZD6244 as a single agent for the treatment of MM, it is important to note that 2 patients 

with heavily pre-treated and refractory disease did experience significant responses to this 

agent. Interestingly, some correlations between responses and ERK1/2 inactivation were 

detected, although the small sample size and the limited number of responses preclude 

drawing definitive conclusions. Similarly, limited sample size prevents conclusions from 

being drawn regarding the single-agent activity of AZD6244 and the presence of either RAS 

mutations or MMSET translocations, although it is conceivable that with expanded analysis, 

such correlations might emerge. In addition, while the regimen was reasonably well 

tolerated, the incidence of infectious complications was unanticipated based on prior 

AZD6244 experience, possibly a consequence of the immunosuppression characteristic of 

MM. Finally, the present results are consistent with emerging evidence that interrupting 

single signaling pathways, even in the presence of appropriate genetic aberrations, may be 

unlikely to lead to frequent and/or sustained responses in MM or other malignancies. 

Instead, the ultimate role of AZD6244 in MM, as in the case for other targeted agents, may 

lie in rational combination regimens with either conventional cytotoxic or other targeted 

agents. For example, MEK1/2 inhibitors such as AZD6244 have been shown in both in vitro 

and in vivo studies in MM to enhance the cytotoxicity of conventional as well as targeted 

agents such as bortezomib, dexamethasone, lenalidomide, perifosine, and Chk1 inhibitors 

(33–35). The present results provide a foundation for future consideration of these strategies 

in relapsed/refractory MM. It is tempting to speculate that the MM patients expressing 

specific genetic aberrations (e.g., RAS mutations, MAF up-regulation, MMSET 

translocations) and/or whose cells exhibit inactivation of the MEK1/2/ERK1/2 pathway 

upon AZD6244 administration might be particularly appropriate settings for such 

combination strategies. Validation or refutation of these hypotheses awaits further AZD6244 

development.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Despite improvements in the survival of patients with multiple myeloma in recent years, 

relapsed/refractory multiple myeloma remains incurable. The robust preclinical anti-

tumor activity demonstrated by the MEK inhibitor AZD6244 and the promising results of 

a phase 1 study using this drug prompted us to conduct a multicenter phase 2 trial in 

patients with relapsed/refractory multiple myeloma. The results of this trial reveal 

minimal single-agent activity in patients with relapsed/refractory multiple myeloma. 

They also demonstrate the feasibility of employing a nano-fluidic proteomic assay to 

monitor post-treatment changes in phospho-MEK and -ERK in this setting. Finally, 

responses in patients with an N/K-RAS mutation or MMSET translocation raise the 

possibility of predictive biomarkers for the use of this agent in relapsed/refractory 

multiple myeloma.
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Figure 1. RT-PCR assay for the detection of the IgH-MMSET hybrid transcript, associated with 
the t(4;14) translocation, in CD138+ primary tumor cells
The myeloma cell lines XG-7 (harboring an MMSET translocation) and OCI-MY5 

(harboring a MAF translocation) were used as positive and negative controls respectively. 

An IgH-MMSET hybrid transcript was found in 1 of 11 patients (#1).
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Figure 2. MEK1/2 profiles in CD138+ primary tumor cells by NanoPro-immunoassay
Phosphorylation profile of MEK1 (A) and MEK2 (B) isoforms in CD138+ cells by 

NanoPro-immunoassay. MEK1/2 isoforms at baseline (pre) and 24 hrs after treatment with 

AZD6244 (post) are shown for each patient. The positions of phosphorylated tyrosine and 

serine residues are indicated. Quantification in triplicate of the signal is relative to Beta2-

microglobulin. Relative signal is shown with standard error bars. * = significantly different 

from pre-treatment value: P < 0.05.
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Figure 3. Mono-phospho-ERK1/2 (pERK1/2) and dual-phosphoERK1/2 (ppERK1/2) profiles in 
CD138+ primary tumor cells by NanoPro-immunoassay
ppERK1 (A), pERK1 (B), ppERK2 (C) and pERK2 (D) at baseline (pre) and 24 hrs after 

treatment with AZD6244 (post) are shown for each patient. Quantification in triplicate of the 

signal is relative to Beta2-microglobulin. Relative signal is shown with standard error bars. * 

= significantly different from pre-treatment value: P < 0.05.
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Table 1

Patient enrollment and characteristics

Total number of patients enrolled and threated 36

Gender (number of patients)

    Female 18

    Male 18

Race (number of patients)

    Black or African American 11

    White 24

    Unknown 1

Age (years)

    Median 65

    Range 43–81

Age group (number of patients)

    40–49 2

    50–59 8

    60–69 16

    70–79 9

    80–89 1

ECOG performance status (number of patients)

    0 6

    1 25

    2 5

Prior treatment (number of regimens)

    Median 5

    Range 2–11

Prior stem cell transplant (number of patients)

    Prior autologous stem cell transplant 16

    Prior allogeneic stem cell transplant 2

Study treatment (number of courses initiated)

    Median 3

    Range 1–14
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Table 2

Grade 3, 4, and 5 toxicities possibly, probably, or definitely related to study treatment*

Nature Number of patients (%) (n=36)

Grade 2 Grade 3 Grade 4 Grade 5

Hematologic

    Anemia 1 (2.8) 3 (8.3)

    Febrile neutropenia 1 (2.8)

    Neutrophil count decreased 4 (11.1) 4 (11.1)

    Platelet count decreased 1 (2.8) 1 (2.8) 2 (5.6)

    White blood cell decreased 2 (5.6) 2 (5.6)

Non-Hematologic

    Acute kidney injury 1 (2.8) 1 (2.8)

    Adult respiratory distress syndrome 1 (2.8)

    Alanine aminotransferase increased 1 (2.8) 1 (2.8)

    Arthralgia 1 (2.8)

    Aspartate aminotransferase increased 2 (5.6) 1 (2.8)

    Creatine phosphokinase increased 4 (11.1) 1 (2.8)

    Dehydration 1 (2.8)

    Diarrhea 5 (13.9) 4 (11.1)

    Dyspnea 1 (2.8)

    Edema face 2 (5.6) 1 (2.8)

    Edema limbs 4 (11.1)

    Fatigue 7 (19.4) 4 (11.1)

    Flu-like symptoms 1 (2.8)

    Gastroesophageal reflux disease 1 (2.8)

    Hepatic failure 1 (2.8)

    Hyperkalemia 1 (2.8)

    Laryngitis 1 (2.8)

    Localized edema 1 (2.8)

    Musculoskeletal and connective tissue disorder – other** 1 (2.8)

    Myalgia 2 (5.6)

    Nausea 2 (5.6)

    Papulopustular rash 1 (2.8)

    Peripheral sensory neuropathy 1 (2.8) 2 (5.6)

    Pruritus 1 (2.8)

    Rash acneiform 5 (13.9) 1 (2.8)

    Sepsis 2 (5.6)

    Skin and subcutaneous tissue disorders – other*** 2 (5.6)

    Skin infection 1 (2.8)

    Upper respiratory infection 1 (2.8)
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Nature Number of patients (%) (n=36)

Grade 2 Grade 3 Grade 4 Grade 5

    Vaginal inflammation 1 (2.8)

    Vomiting 1 (2.8)

*
Data in table represents maximum toxicity grade per patient for each toxicity

**
Rhabdomyolysis

***
“Angular chelitis, unilateral” (1 patient) and “rash on extremities” (1 patient)
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