18 research outputs found

    a narrative review

    Get PDF
    Acute respiratory distress syndrome (ARDS) is a severe organ failure occurring mainly in critically ill patients as a result of different types of insults such as sepsis, trauma or aspiration. Sepsis is the main cause of ARDS, and it contributes to a high mortality and resources consumption both in hospital setting and in the community. ARDS develops mainly an acute respiratory failure with severe and often refractory hypoxemia. ARDS also has long term implications and sequelae. Endothelial damage plays an important role in the pathogenesis of ARDS. Understanding the mechanisms of ARDS presents opportunities for novel diagnostic and therapeutic targets. Biochemical signals can be used in concert to identify and classify patients into ARDS phenotypes allowing earlier effective treatment with personalised therapies. This is a narrative review where we aimed to flesh out the pathogenetic mechanisms and heterogeneity of ARDS. We examine the links between endothelium damage and its contribution to organ failure. We have also investigated future strategies for treatment with a special emphasis in endothelial damage.publishersversionpublishe

    Endothelial dysfunction triggers acute respiratory distress syndrome in patients with sepsis: a narrative review

    Get PDF
    Acute respiratory distress syndrome (ARDS) is a severe organ failure occurring mainly in critically ill patients as a result of different types of insults such as sepsis, trauma or aspiration. Sepsis is the main cause of ARDS, and it contributes to a high mortality and resources consumption both in hospital setting and in the community. ARDS develops mainly an acute respiratory failure with severe and often refractory hypoxemia. ARDS also has long term implications and sequelae. Endothelial damage plays an important role in the pathogenesis of ARDS. Understanding the mechanisms of ARDS presents opportunities for novel diagnostic and therapeutic targets. Biochemical signals can be used in concert to identify and classify patients into ARDS phenotypes allowing earlier effective treatment with personalised therapies. This is a narrative review where we aimed to flesh out the pathogenetic mechanisms and heterogeneity of ARDS. We examine the links between endothelium damage and its contribution to organ failure. We have also investigated future strategies for treatment with a special emphasis in endothelial damage

    An interdisciplinary assessment of climate engineering strategies

    Get PDF
    Author Posting. © Ecological Society of America, 2014. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 12 (2014): 280–287, doi:10.1890/130030.Mitigating further anthropogenic changes to the global climate will require reducing greenhouse-gas emissions (“abatement”), or else removing carbon dioxide from the atmosphere and/or diminishing solar input (“climate engineering”). Here, we develop and apply criteria to measure technical, economic, ecological, institutional, and ethical dimensions of, and public acceptance for, climate engineering strategies; provide a relative rating for each dimension; and offer a new interdisciplinary framework for comparing abatement and climate engineering options. While abatement remains the most desirable policy, certain climate engineering strategies, including forest and soil management for carbon sequestration, merit broad-scale application. Other proposed strategies, such as biochar production and geological carbon capture and storage, are rated somewhat lower, but deserve further research and development. Iron fertilization of the oceans and solar radiation management, although cost-effective, received the lowest ratings on most criteria. We conclude that although abatement should remain the central climate-change response, some low-risk, cost-effective climate engineering approaches should be applied as complements. The framework presented here aims to guide and prioritize further research and analysis, leading to improvements in climate engineering strategies.NSF grant #1103575 supported KRMM

    Training future generations to deliver evidence-based conservation and ecosystem management

    Get PDF
    1. To be effective, the next generation of conservation practitioners and managers need to be critical thinkers with a deep understanding of how to make evidence-based decisions and of the value of evidence synthesis. 2. If, as educators, we do not make these priorities a core part of what we teach, we are failing to prepare our students to make an effective contribution to conservation practice. 3. To help overcome this problem we have created open access online teaching materials in multiple languages that are stored in Applied Ecology Resources. So far, 117 educators from 23 countries have acknowledged the importance of this and are already teaching or about to teach skills in appraising or using evidence in conservation decision-making. This includes 145 undergraduate, postgraduate or professional development courses. 4. We call for wider teaching of the tools and skills that facilitate evidence-based conservation and also suggest that providing online teaching materials in multiple languages could be beneficial for improving global understanding of other subject areas.Peer reviewe

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Practical Lessons on Antimicrobial Therapy for Critically Ill Patients

    No full text
    Sepsis stands as a formidable global health challenge, with persistently elevated mortality rates in recent decades. Each year, sepsis not only contributes to heightened morbidity but also imposes substantial healthcare costs on survivors. This narrative review aims to highlight the targeted measures that can be instituted to alleviate the incidence and impact of sepsis in intensive care. Here we discuss measures to reduce nosocomial infections and the prevention of equipment and patient colonisation by resilient pathogens. The overarching global crisis of bacterial resistance to newly developed antimicrobial agents intensifies the imperative for antimicrobial stewardship and de-escalation. This urgency has been accentuated in recent years, notably during the COVID-19 pandemic, as high-dose steroids and opportunistic infections presented escalating challenges. Ongoing research into airway colonisation’s role in influencing disease outcomes among critically ill patients underscores the importance of tailoring treatments to disease endotypes within heterogeneous populations, which are important lessons for intensivists in training. Looking ahead, the significance of novel antimicrobial delivery systems and drug monitoring is poised to increase. This narrative review delves into the multifaceted barriers and facilitators inherent in effectively treating critically ill patients vulnerable to nosocomial infections. The future trajectory of intensive care medicine hinges on the meticulous implementation of vigilant stewardship programs, robust infection control measures, and the continued exploration of innovative and efficient technological solutions within this demanding healthcare landscape

    An interdisciplinary assessment of climate engineering strategies

    No full text
    Author Posting. © Ecological Society of America, 2014. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 12 (2014): 280–287, doi:10.1890/130030.Mitigating further anthropogenic changes to the global climate will require reducing greenhouse-gas emissions (“abatement”), or else removing carbon dioxide from the atmosphere and/or diminishing solar input (“climate engineering”). Here, we develop and apply criteria to measure technical, economic, ecological, institutional, and ethical dimensions of, and public acceptance for, climate engineering strategies; provide a relative rating for each dimension; and offer a new interdisciplinary framework for comparing abatement and climate engineering options. While abatement remains the most desirable policy, certain climate engineering strategies, including forest and soil management for carbon sequestration, merit broad-scale application. Other proposed strategies, such as biochar production and geological carbon capture and storage, are rated somewhat lower, but deserve further research and development. Iron fertilization of the oceans and solar radiation management, although cost-effective, received the lowest ratings on most criteria. We conclude that although abatement should remain the central climate-change response, some low-risk, cost-effective climate engineering approaches should be applied as complements. The framework presented here aims to guide and prioritize further research and analysis, leading to improvements in climate engineering strategies.NSF grant #1103575 supported KRMM
    corecore