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Acute respiratory distress syndrome (ARDS) is a severe organ failure occurring 
mainly in critically ill patients as a result of different types of insults such as 
sepsis, trauma or aspiration. Sepsis is the main cause of ARDS, and it contributes 
to a high mortality and resources consumption both in hospital setting and in 
the community. ARDS develops mainly an acute respiratory failure with severe 
and often refractory hypoxemia. ARDS also has long term implications and 
sequelae. Endothelial damage plays an important role in the pathogenesis of 
ARDS. Understanding the mechanisms of ARDS presents opportunities for 
novel diagnostic and therapeutic targets. Biochemical signals can be  used in 
concert to identify and classify patients into ARDS phenotypes allowing earlier 
effective treatment with personalised therapies. This is a narrative review where 
we aimed to flesh out the pathogenetic mechanisms and heterogeneity of ARDS. 
We examine the links between endothelium damage and its contribution to organ 
failure. We have also investigated future strategies for treatment with a special 
emphasis in endothelial damage.
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Introduction

The acute respiratory distress syndrome (ARDS) is a complex and varied syndrome that is 
characterized by severe and often refractory hypoxemia, resulting in a high morbidity and 
mortality rate (1). ARDS is caused by a local injury to the alveolar capillary membrane due to 
endothelial dysfunction, alveolar injury, or both. The most accurate estimate is that around 10% 
of invasively ventilated patients fulfil the criteria for ARDS (2). The current and most widely 
used definition requires an acute onset, radiographic bilateral infiltrates consistent with 
pulmonary (not cardiogenic reason) oedema and severe hypoxemia despite 5 cmH2O of positive 
end-expiratory pressure (PEEP) – so known as the Berlin criteria (3). This condition affects 
between 17 and 20 people per 100,000 annually, which represents nearly 5% of mechanically 
ventilated patients (4).
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ARDS definition has been modified over the years and new 
ongoing definitions are being developed. Sub-phenotypes of ARDS 
have also been identified based on plasma biomarkers of inflammatory 
host response, endothelial dysfunction, and coagulopathy (5–7). 
Around 1/3 of patients with ARDS present with a hyper-inflammatory 
sub-phenotype, while the other 2/3 presents with a hypo-inflammatory 
sub-phenotype (8). While pulmonary endothelial dysfunction is 
frequently overlooked in ARDS pathophysiology, pre-clinical models 
have established that endothelial dysfunction can be responsible for 
development of pulmonary oedema (9). It is plausible to hypothesize 
that a subset of patients has an endothelial-driven injury 
sub-phenotype. This paper aims to summarize the pathophysiological 
links between endothelial dysfunction and injury and the development 
of ARDS. It will not only focus on biomarkers measurable in the 
systemic circulation but also on the analysis of local biochemical 
changes. Furthermore, it will explore the heterogeneity of these 
processes in patients with ARDS and review the available interventions 
to target the endothelium in ARDS.

Methods

For this review a literature search was conducted on PubMed/
MEDLINE, Embase and Google Scholar database using combinations 
of keywords; “acute respiratory distress syndrome,” “endothelium,” 
“endothelial dysfunction,” “heterogeneity” and “microcirculation.” 
Published articles focusing on the role, implications and treatment of 
endothelial dysfunction in ARDS were included. Relevant articles 
referenced within included reports were also accessed. We identified 
case studies, case series, observational studies, randomised controlled 
trials and review articles.

Pathophysiology

ARDS is characterized by acute onset of hypoxemia, bilateral 
pulmonary infiltrates on chest imaging, and respiratory failure 
requiring mechanical ventilation (3). There are two main types of 
ARDS: direct and indirect. Direct ARDS refers to cases where the lung 
injury is caused by a direct insult to the lung tissue itself, such as 
pneumonia or aspiration (10). In direct ARDS, there is damage to the 
alveolar epithelial and endothelial cells, which can lead to the 
accumulation of fluid in the lungs, impaired gas exchange, and 
decreased lung compliance (11). Indirect ARDS, on the other hand, 
refers to cases where the lung injury is caused by an indirect insult, 
such as sepsis or trauma. In indirect ARDS, the lung injury is thought 
to be caused by an inflammatory response that is triggered by the 
systemic insult (12). This can lead to the activation of various immune 
cells and the release of inflammatory mediators, which can damage 
the pulmonary endothelium and alveolar epithelium, resulting in lung 
injury and respiratory failure.

The difference between pulmonary and extrapulmonary ARDS 
has been acknowledged for nearly 2 decades (13). The endothelium 
is primarily distorted following an extrapulmonary insult, with 
damage due to the action of inflammatory mediators in the 
systemic circulation that increase vascular permeability and 
oedema resulting in microcirculation congestion. As opposed to 
direct pulmonary insults, that activate alveolar macrophages and 

neutrophils, increasing IL-6 and altered type I and type II cells in 
bronchoalveolar lavage samples, leading to intrapulmonary 
inflammation and increased extracellular matrix remodelling (14). 
A recent prospective observational study of airspace fluid from 153 
mechanically ventilated patients found increased 
glycosaminoglycan shedding in patients with direct lung injury 
aetiology for ARDS (15). This experiment showed a link between 
epithelial layer shedding and reduced surfactant, a pathological 
mechanism in ARDS that was also increased by duration of 
mechanical ventilation. Using this distinction and differentiating 
patients by source of ARDS or degree of endothelial involvement 
could be helpful in both predictive and prognostic enrichment of 
future studies.

Endothelial glycocalyx
The pulmonary endothelium consists of a single layer of 

mesenchyme-derived and non-fenestrated endothelial cells. The 
luminal surface of blood vessels is lined with endothelial cells which 
are in turn covered by a jelly-like layer of glycocalyx, made up of 
proteoglycans and glycosaminoglycans separating the intravascular 
compartment from the interstitium (16). The glycocalyx is important 
in maintaining the endothelial integrity and is implicated in 
coagulation, cell signalling and inflammation (17). It is composed of 
carbohydrate-like glycosaminoglycans, heparan sulfate, hyaluronic 
acid (HA) and syndecans (Table  1). The syndecan family of 
transmembrane proteoglycans consists of four main types (SDC1-4), 
and their expression levels can vary between different tissues and 
organs (18). Syndecan-1 (SDC1) is primarily expressed on the surface 
of epithelial cells and is involved in a variety of cellular functions 
(19–21). It has been implicated in mechanosensation, or the ability of 
cells to sense and respond to physical forces in their environment (22). 
SDC1 also plays a role in vascular permeability, or the ability of 
substances to pass through blood vessel walls, and has been shown to 
promote leukocyte adhesion, which is the attachment of white blood 
cells to the walls of blood vessels (22).

In addition to these functions, SDC1 has been implicated in a 
variety of other biological processes, including cell migration, 
differentiation, and proliferation. It is also involved in wound healing 
and tissue regeneration and has been shown to interact with a variety 
of signalling molecules, including growth factors and extracellular 
matrix proteins.

Pulmonary endothelium
The function of the lungs in gas exchange means the endothelium 

here is unique from endothelium in other parts of the body. The lungs 
are a low-pressure system where the entire blood volume passes 
through. Hypoxic pulmonary vasoconstriction (HPV) is a 
physiological response of the lungs to low oxygen levels in the alveoli 
(the tiny air sacs where gas exchange occurs). This response involves 
the constriction of blood vessels in the lungs, which helps to redirect 
blood flow to areas of the lungs with better oxygenation and improve 
the efficiency of gas exchange. While the systemic circulation 
vasodilates in response to low oxygen signals, the pulmonary vessels 
constrict to redirect blood flow to better aerated alveoli. This response 
is more pronounced as the diameter of the vessels decreases (23). The 
pulmonary endothelium is highly metabolically active and involved 
in maintaining vascular tone through nitric oxide, prostacyclin, 
serotonin and endothelin production (24).
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One of the main functions of the pulmonary vascular endothelium 
is to preserve the airspaces against vascular fluid. The permeability of 
this membrane is concerned in several disease states, indicative of the 
health of different organs. Permeability leads to trans-endothelial 
movement of fluid and cells into airspaces (Figure 1).

The lungs are also an important site of immunological defence, so 
the endothelium is specialised at vascular branch points, which act as 
filters to trap and transport potential antigens to local lymph nodes 
(25). The immune response recruits inflammatory cells to the lung 
where adjacent cells respond by releasing inflammatory substances 
such as arachidonate, ATP and reactive oxygen species which damage 
the endothelium (26–28). ARDS precipitants such as gastric acid and 
mechanical stress increase mitochondrial transcription of leukocyte 
adhesion molecules (28). ARDS generating conditions increase the 
concentration of mitochondrial cytosolic calcium which leads to 
nuclear factor kappa B (NFκB) production through a hydrogen 
peroxide pathway. This activation leads to production of E-selectin 
and P-selectin, important inflammatory and adhesion molecules in 
the lung.

Alveolar glycocalyx
The alveolar glycocalyx is a layer of glycoproteins and 

proteoglycans that covers the surface of the alveolar epithelium, which 
is the tissue that lines the alveoli in the lungs (29). The glycocalyx is a 
part of the extracellular matrix of the alveoli and plays an important 
role in maintaining the integrity and function of the alveolar barrier 
(30). The alveolar glycocalyx is involved in regulating the exchange of 
fluids, electrolytes, and other molecules across the alveolar epithelium, 
which is essential for normal lung function (Figure 1). It also helps to 
protect the alveolar epithelium from damage caused by mechanical 
stress and inflammation. Recent studies have suggested that the 
alveolar glycocalyx may play a role in the pathogenesis of ARDS (15, 
30, 31). Damage to the glycocalyx has been shown to increase the 
permeability of the alveolar barrier and contribute to the development 
of pulmonary oedema (Figure  2). Animal models of inhaled 

pulmonary insults lead to alveolar epithelial glycocalyx breakdown, 
loss of surfactant and reduced lung function (11). Studies have shown 
that direct pulmonary insults lead to epithelial glycocalyx breakdown 
and are correlated to PaO2/FiO2 and outcomes (duration of 
mechanical ventilation) in ARDS patients (15). This distinction 
between the pathogenesis of direct and indirect lung injury in ARDS 
could lead to new diagnostic and treatment targets (32).

Endothelial glycocalyx destruction and ARDS
The destruction of the endothelial glycocalyx has been associated 

with increased vascular permeability, leukocyte adhesion, and 
inflammation in the lungs (33, 34). Moreover, clinical studies have 
demonstrated that patients with ARDS have increased levels of 
glycocalyx components in their circulation, suggesting that glycocalyx 
damage may be a feature of the disease (35–37). Although the exact 
mechanisms underlying glycocalyx destruction in ARDS are not fully 
understood, it is thought to be related to a combination of factors, 
including oxidative stress, inflammation, and mechanical stress.

Animal models have been used to demonstrate the relationship 
between endotoxemia and loss of endothelial thickness (38–41). LPS 
injection causes increased pulmonary capillary permeability with 
endothelial leak that recovers over 96 h (40).

Disrupted tight junctions
Tight junctions between endothelial cells maintain barrier 

integrity, which is dependent on vascular endothelial cadherin 
(VE-cadherin) (42). Endothelial permeability is regulated by adherens 
junctions and tight junctions, particularly on the venular side where 
there are molecular targets for inflammatory mediators such as 
tumour necrosis factor (TNF), interleukin-1 (IL-1) and vascular 
endothelial growth factor (VEGF) (42, 43). Endothelial leak is 
promoted by intracellular sequestration of VE-cadherin which is 
initiated by mediators such as thrombin and VEGF (44). Inflammatory 
mediators thrombin and VEGF stimulate dismantling of adherens and 
tight junctions in a calcium dependent manner by phosphorylating 

TABLE 1 Endothelial markers and the associations with ARDS.

Endothelial markers Associations with ARDS

Syndecan 1

Negative correlation with PaO2/FiO2

Positive correlation with need for intubation

Higher SOFA score & mortality

Increased in cases of influenza A with ARDS

Indirect ARDS/Extrapulmonary sepsis & ARDS

Increased in non-survivors

Hyaluronan Higher concentrations associated with ARDS

Soluble thrombomodulin
Increases with severity of ARDS

Increased in non-survivors

Angiopoeitin 2
Independent predictor of mortality in ARDS

Associated with infective source ARDS

Intercellular adhesion molecule
Expressed after interaction with bacteria

Associated with protein rich pulmonary oedema

Selectins Associated with ARDS severity & mortality Protein rich pulmonary oedema

Heparan sulfate Indirect ARDS Increased with increasing fluid transfusion

Hyaluronic acid Direct ARDS

SOFA, sequential organ failure assessment score; ARDS, acute respiratory disease syndrome.
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FIGURE 1

A barrier called between the alveolus and capillary prevents the formation of oedema in health (A). This deteriorates in mild (B) and further in severe 
injury (C), becoming more permeable leading to the development of protein rish oedema in the lungs. ENaC, epithelial sodium channel; PMN, 
polymorphonuclear cells; RBC, red blood cell. Reproduced with permission from The Lancet.
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VE-cadherin, leading to actin chain contraction and increased 
intercellular permeability (45).

Angiopoeitin-2
Angiopoeitin 2 (Ang-2) is a marker of endothelial dysfunction 

and has therefore been studied extensively in patients with or at risk 
for ARDS. Ang-2 works with Tie-2 and in opposition to Ang-1 to 
control permeability throughout the vascular network. A retrospective 
analysis of 931 patients from the NHLBI ARDS Network randomised 
controlled trial (RCT) fluid liberal vs. fluid conservative management 
strategy in ALI (FACTT) trial found that Ang-2 was an independent 
predictor of mortality in ARDS as well as being statistically 
significantly associated with infectious aetiology of acute lung injury 
(ALI) (37). A meta-analysis of prospective cohort studies focussing on 
Ang-2 and risk of mortality in ARDS found increased odds of death 
in patients with a raised baseline Ang-2 level (OR 1.56, 95% CI 
1.3–1.89) (46). In patients with infection related ARDS, Ang-2 levels 
higher on day 3 than on day 0 was independently associated with 
death at an OR 2.29 (95% CI 1.54–3.43, p < 0.001). Ang-2 levels on day 
3 were associated with mortality in infection related ARDS (OR 1.64, 
95% Ci 1.32–2.03, p < 0.001) as well as in non-infection related ARDS 
(OR 2.03, 95% CI 1.31–3.16, p  = 0.002). Patients in the fluid 
conservative group had a 13% greater decline in Ang-2 over the 3 days 
(p = 0.005) and this effect was more in those patients who were not in 
shock and experienced a 19.9% fall in Ang-2 levels (37).

Using Mendelian randomisation a causal link between Ang-2 and 
ARDS was investigated (47). In this study the authors found that 
patients with European ancestry who had sepsis were more likely to 
develop ARDS if they expressed the ANGPT2 genetic variant. Five 

ANGPT2 gene variants had associations with ARDS in sepsis patients 
with European ancestry. This not only describes a potential subset of 
patients but also highlights how genetic data could be used to classify 
and phenotype cohorts in ARDS.

A study of single nucleotide polymorphisms (SNPs) in 225 ARDS 
patients found an association with FLT1, which encodes a VEGF 
receptor (48). The authors proposed this as a potential mechanistic 
link between endothelial damage and ARDS. Forty-nine percent of 
patients in the cohort had positive blood cultures with Gram-negative 
bacteria identified and 49% had direct pulmonary injury resulting in 
ARDS (48). Utilizing omics data represents a promising approach for 
elucidating the underlying mechanisms of intricate pathologies, such 
as ARDS.

Intercellular adhesion molecule (ICAM) is a cell surface 
glycoprotein that plays an important role in leukocyte adhesion and 
trans-endothelial migration during inflammation (49). ICAM 
expression on endothelial cells can induce actin stress fibre formation, 
which is a cytoskeletal structure composed of contractile actin 
filaments that are important for maintaining cell shape and motility 
(50). ICAM expression can also increase endothelial permeability 
through a positive feedback loop involving the activation of 
intracellular signalling pathways, such as the RhoA/ROCK pathway. 
The formation of actin stress fibres induced by ICAM expression can 
activate RhoA/ROCK signalling, which in turn leads to the assembly 
of actin-myosin contractile structures and increased endothelial 
permeability (51). This positive feedback loop between ICAM 
expression, actin stress fibre formation, and increased permeability is 
thought to play an important role in the pathogenesis of various 
inflammatory disorders, including acute lung injury and sepsis. In 

FIGURE 2

Demonstrating changes in endothelial permeability and alveolus in acute respiratory distress syndrome. Inflammatory cascade signals breakdown 
endothelial cell adhesion molecules, widening space between endothelial cells. Increased expression of leukocyte adhesion molecules increases 
leukocyte rolling and migration across the endothelial barrier, where cytokine release, reactive oxygen species and damaging enzymes increase the 
inflammatory feedback loop. This leads to oedema and sloughing off of bronchial endothelium, which reduced the gas exchange ability of the 
alveolus. Image adapted from Biorender.
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these conditions, increased ICAM expression and activation of RhoA/
ROCK signalling can lead to a breakdown of the endothelial barrier, 
resulting in the leakage of fluid and cells into the interstitial space and 
impaired organ function (49).

Intracapillary red cell injury
Alveolar red blood cells and pulmonary haemorrhage are also 

features of ARDS. RBC rheology in sepsis is affected by several factors, 
including increased nitric oxide release affecting membrane 
deformability as well as increased aggregation and increased viscosity 
(52). Altered membrane deformability can lead to haemolysis and the 
release of cell free haemoglobin, which travels into alveoli and causes 
damage (53). This was proposed as a mechanism causing transfusion 
related acute lung injury (TRALI) however, two RCTs have disputed 
this mechanism, showing no benefit of fresh RBCs in overall survival 
of critically ill patients (54, 55). Cell-free haemoglobin precipitates 
release of reactive oxygen species (ROS) which impairs the endothelial 
integrity, leading to vasculopathy (56, 57). Large cohort studies have 
been employed to investigate the influence of cell free haemoglobin 
and pulmonary hypertension in sickle cell anaemia (56, 58, 59) RBC 
haemolysis products can be considered danger-associated molecular 
patterns (DAMPs) that could cause lung injury by damaging the 
endothelium (60).

Heterogeneity in endothelial dysfunction in 
patients with ARDS

Patients with a hyper-inflammatory ARDS sub-phenotype also 
have higher plasma concentrations of biomarkers indicative of 
endothelial dysfunction (Table 2) (61). They frequently experience 
multi-organ failure and shock, all consistent with profound endothelial 
dysfunction. Latent class analysis has been used to identify hyper- and 

hypo-inflammatory sub-phenotypes of ARDS, which are consistent 
across a number of large randomised controlled trials, with specific 
biological and clinical characteristics affecting treatment response and 
prognosis (8, 62–64). Pathophysiological mechanisms affecting the 
endothelial barrier function are unlikely to be activated simultaneously 
in all patients who develop ARDS. When comparing patients with 
pulmonary and non-pulmonary causes for ARDS, the latter has higher 
levels of circulating biomarkers indicative of endothelial dysfunction 
(such as Ang2, IL-8 and vWF) (12, 34). Combined with the 
observation that patients with non-pulmonary sepsis frequently 
develop multi-organ failure and that in all of these organs endothelial 
dysfunction may contribute to failure of the organ, it has been 
suggested that endothelial dysfunction plays a more important role in 
this subset of patients (36).

The Fluid and Catheter Treatment Trial (FACTT) identified 2 
definite sub-phenotypes of ARDS that responded differently to fluid 
management (62). The authors randomly assigned ARDS patients to 
receive either conservative or liberal fluid management strategy. They 
found that those with higher inflammatory markers and hypotension 
had 40% mortality when treated with a conservative strategy and 50% 
mortality in the liberal group. However if a patient was not in this 
hyperinflammatory group they had a 26% mortality in fluid-
conservative and 18% mortality if liberally treated with fluid (62). This 
suggests that sub-phenotyping patients according to clinical markers 
can influence treatment decisions. Potentially biochemical or omics 
driven sub-typing could impact treatment as well.

COVID-19 and pulmonary endothelium
The pulmonary endothelium plays an important role in 

COVID-19 related lung injury by blood flow regulation, maintaining 
vascular integrity, and preventing the extravasation of fluid and cells 

TABLE 2 Sub-phenotypes of ARDS, biomarkers and features.

Sub-phenotype Biomarkers Features

Hyper-inflammatory
Higher concentrations IL-6, IL-8, TNF receptor-1, and 

PAI-1, ICAM, vWF, Surfactant protein-D

More sepsis

Higher heart rate

Higher total minute ventilation

Lower SBP

Lower HCO3−

Lower protein C

X3 higher vasopressor at baseline

Higher mortality

Hypo-inflammatory Lower concentrations IL-6, IL-8, PAI-1, ICAM, vWF

More trauma related

More organ failure free days

More ventilator free days

Lower mortality

Pulmonary

Alveolar macrophages, neutrophils

IL-6

Type I & type II cells

Reduced surfactant

GAG shedding

Direct pulmonary injury

Extra-pulmonary

Increased Ang-2, IL-8, vWF

Heparan sulfate

SDC-1

Non-pulmonary sepsis

Multi-organ failure

IL-6, interleukin 6; IL-8, interleukin 8; TNF, tumour necrosis factor; PAI, plasminogen activator inhibitor; ICAM, intercellular adhesion molecule; vWF, von Willebrand factor; SPD, surfactant 
protein D; SBP, systolic blood pressure; HCO3, bicarbonate; GAG, glycosaminoglycan; Ang-2, angiopoeitin 2; SDC-1, syndecan-1.
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into the lung tissue (65). In COVID-19, the virus can infect pulmonary 
endothelial cells through the ACE2 receptor, which is expressed on the 
surface of these cells (66). The viral infection can lead to endothelial 
dysfunction, inflammation, and increased vascular permeability, 
which may contribute to the development of severe respiratory 
symptoms and organ dysfunction in COVID-19 patients (67–69). The 
endothelial dysfunction can also lead to the pro-inflammatory and 
pro-thrombotic state in the pulmonary endothelium with formation 
of microthrombi further exacerbating tissue damage (70).

Treatments targeting endothelial dysfunction
Despite great efforts there has been equivocal results in the search 

for pharmacologic agents to treat ARDS, a Cochrane meta-analysis 
could find no benefit of any recently investigated therapies (71). 
Research around therapeutic options in ARDS has focused on 
inhibiting the damaging aspects of the immune response and 
endothelial degradation. Targeting the endothelium and it’s 
regeneration would offer an important goal for predictive 
enhancement of future trials. Those with a higher proportion of 
endothelial damage involvement (non-pulmonary sepsis) might 
benefit more from drugs targeting the endothelium.

Therapies targeting glycocalyx
Fluid therapy for patients with sepsis is the standard of care 

worldwide (72, 73). Excessive fluid resuscitation and hyper-oncotic 
solutions have been shown to increase damage to the glycocalyx (74). 
The FINNAKI trial showed that fluid administration is correlated to 
amount of fluid transfused and non-survivors had more SDC-1 and 
thrombomodulin circulating than survivors (75). Glycocalyx damage 
assessed by peripheral heparan sulfate levels was also shown to 
correlate with each litre of intravenous fluids administered (74). 
Excess fluid administration is associated with poorer outcomes in 
sepsis (76–78). Albumin also preserves the glycocalyx and reduced 
leukocyte adhesion and SDC-1 concentrations (79). A recent review 
found that plasma and albumin were superior to crystalloids and 
colloids in preserving the glycocalyx (Table 3) (84). Conservative fluid 
resuscitation strategies in ARDS patients aim to prevent pulmonary 
oedema and may act by preventing glycocalyx breakdown and leakage.

Recombinant thrombomodulin has also been investigated as a 
potential therapy to induce endothelial glycocalyx repair in 
ARDS. Thrombomodulin is a key component of the endothelial 

glycocalyx with anticoagulant effect, binding thrombin to generate 
activated protein C. By neutralizing high mobility group B1 
(HMG-B1) released by necrotic cells it attenuates inflammation (85). 
Recombinant thrombomodulin has been investigated as a treatment 
for sepsis induced coagulopathy due to its effect on protein C (86). 
However, the SCARLET trial found no benefit at 28-days for patients 
with sepsis and DIC who received rhTM. A study investigating the 
possible effects of recombinant thrombomodulin on LPS-induced 
ARDS in mice administered recombinant thrombomodulin, which 
was associated with less capillary endothelial disruption and oedema 
than control (39). Genetic analysis suggested that recombinant 
thrombomodulin treatment may affect anti-inflammatory, cell 
proliferative and glycocalyx synthesis pathways and recombinant 
thrombomodulin might enhance glycocalyx synthesis. Survival of 
recombinant thrombomodulin treated mice was significantly higher 
than control mice after 48 h. Another study found that recombinant 
thrombomodulin might be a regulator of inflammation in the lung 
endothelium and protect against endothelial damage due to 
Streptococcus pneumoniae (87). The effect of recombinant 
thrombomodulin to reduce inflammation and possibly influence 
glycocalyx repair in ARDS warrants further investigation.

Neutrophil elastase, released from activated neutrophils in the 
immune response, damages pulmonary endothelium and is a factor 
contributing to ARDS (41). Sivelestat is a competitive inhibitor of 
neutrophil elastase, preventing pulmonary endothelial permeability 
but not affecting the immune response elsewhere (88). Though it has 
shown some efficacy in treating ALI, ARDS and SARS-CoV2,poorly 
designed, negative and small trials have hampered its adoption. 
Although some trials have shown a connection between PaO2/FiO2 
and sivelestat therapy, there was no improvement in ventilation days 
or mortality (89–92). Retrospective studies have also had their validity 
questioned based on how they selected patients to show benefit in 
sepsis patients with disseminated intravascular coagulation and ARDS 
(93). Despite this controversy, the potential for a neutrophil elastase 
inhibitor to improve outcomes in ARDS is intriguing. A well designed 
randomised trial, enriched with subgroups of at risk patients could 
answer these questions in the future (94).

Therapies targeting angiopoietin system
The negative association of high Ang-2 with mortality in 

ARDS has also gained attention as a possible therapeutic target. 

TABLE 3 ARDS therapies and benefits in ARDS (39, 62, 79–81), (82, p. 21), (83).

Therapeutics Benefits in ARDS

Conservative fluid therapy
Reduced glycocalyx damage measured by heparan sulfate concentration

Prevent pulmonary oedema

Albumin Reduced leukocyte adhesion and SDC-1 concentration

Recombinant thrombomodulin
Less endothelial disruption, oedema, inflammation

Enhance glycocalyx synthesis

GSK2586881 (Recombinant human angiotensin converting enzyme type 2)
Anti-inflammatory

Benefits in COVID-19

Imatinib mesylate
Reduced mortality in COVID-19 ARDS

Reverses endothelial dysfunction and improves immunomodulation

Mesenchymal stromal stem cells Anti-inflammatory and endothelial restoration

Statin Improved survival in ARDS hyper-inflammatory subphenotype

https://doi.org/10.3389/fmed.2023.1203827
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Cusack et al. 10.3389/fmed.2023.1203827

Frontiers in Medicine 08 frontiersin.org

Ang-2 is a product of the renin-angiotensin-aldosterone system 
(RAAS) that is responsible for blood pressure, vascular 
permeability, vasodilation and sodium absorption. GSK2586881 
is a recombinant human angiotensin converting enzyme type 2 
that was studied in ARDS and aimed to reduce levels of Ang-2, 
increasing Ang (1–7) thereby promoting anti-inflammatory and 
vasodilatory effects (95). The study was terminated early for 
failing to meet primary endpoints, though it has gained some 
attention for its potential treating COVID-19, there have been no 
further trials in ARDS, that we  are aware of (80, 96). The 
involvement in of the RAAS in development of ARDS or patient’s 
failure to progress from mechanical ventilation could represent 
an important biologic marker for future prognostic enrichment 
(97, 98).

Imatinib mesylate is a small molecule therapy that was 
initially developed for cancer treatment with several targets 
including Abl, Arg (Abl-related gene), the stem-cell factor 
receptor (c-KIT) and platelet-derived growth factor receptor 
(PDGF-R) (99). Through its effect on Rac1 transmission and Arg, 
it improves endothelial cell barrier function and prevents 
vascular leak (100). Imatinib protects the endothelial barrier 
through inhibition of the ABL-2 tyrosine kinase, which is a key 
regulator of barrier function (100, 101). In vitro and mouse 
models have highlighted its possible differential effect in treating 
LPS-induced and ventilator induced lung injury models of ARDS 
(102). This raises an interesting question about the potential uses 
of the drug in homogenous populations of ARDS patients, 
depending on the inciting cause. A multicentre randomised 
placebo controlled trial of imatinib in COVID-19 disease found 
imatinib reduced mortality (14% placebo group vs. 8% imatinib 
group; adjusted hazard ratio 0.52, CI 0.26–1.05, p = 0.068) (103). 
Although the primary outcome of this trial, time to 
discontinuation of supplemental oxygen, did not reach statistical 
significance. Secondary analysis found that the reduction in 
mortality attributed to imatinib was completely mediated through 
immunomodulation and reversal of endothelial barrier 
dysfunction (81). Imatinib has shown some efficacy in treatment 
of pulmonary vaso-occlusive disease and post-chemotherapy 
fibrotic lung disease (104, 105). Case reports and series have 
emphasised imatinib’s usefulness treating various syndromes of 
endothelial leak, meaning it could have an important role in the 
future treatment of a subset of ARDS patients (82, 105, 106).

Alternative endothelial targeting therapies
Other treatments for ARDS targeting the endothelium have 

been sought out. Including old Chinese remedies such as Crocin, 
that may inhibit inflammation signalling as well as heparanase 
and matrix metalloproteinase 9 to preserve heparan sulfate and 
syndecan-4  in LPS induced ARDS (107). Therapies such as 
mesenchymal stromal stem cells have also been investigated for 
their anti-inflammatory and endothelial restorative abilities (83). 
Statins have also been investigated for their ability to reduce 
vascular leak in ARDS. HARP-2 and SAILS trials did not find any 
benefit of simvastatin or rosuvastatin in ARDS (108, 109). 
Analyses of the results of these trials did subsequently identify 
sub-phenotypes that may benefit from statin therapy. ARDS 
patients with hyperinflammatory sub-phenotypes had a higher 
survival rate with simvastatin compared to placebo (110).

Future directions

Combining radiological, clinical and biochemical signals to 
accurately classify patients is key to delivering appropriate and 
timely care (111). Differential effects of non-pulmonary and 
pulmonary sepsis on the aetiology of ARDS provide opportunities 
for prognostic and predictive enrichment. Ang-2 and the renin-
angiotensin-aldosterone system have been implicated as an 
important mediator in ARDS and the underlying structural lung 
damage, which could represent a target for predictive enrichment 
(112). Finding more targets such as these will depend on the 
application of multi-omics data and specific pathway enrichment 
studies (113). Until a single biomarker or point of care test can 
be  prospectively tested, we  can use large datasets to identify 
characteristic traits (114). Sub-classifying patients according to 
endothelial involvement or epithelial impact on disease could 
help develop treatments or diagnostic tests to catch at risk groups 
earlier. Identifying subtypes of disease and pathogenesis, 
predictive enrichment to reduce patient heterogeneity in trial 
design (115, 116). Genome studies, predictive pathway analysis 
and large repositories of omics data will help identify mechanisms 
and potential targets for treatment.

Conclusion

Here we  have discussed the mechanisms of endothelial 
dysfunction underlying sub-phenotypes of ARDS. Endothelial 
dysfunction in the pathogenesis of sepsis and ARDS is an 
important target for new diagnostic, prognostic and therapeutic 
targets in ICU. Identifying genetic and phenotypic disposition to 
more severe sub-phenotypes of critical illness will enhance the 
delivery of personalised medicine in the future.
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