47 research outputs found

    Definition of icteric interference index for six biochemical analytes

    Get PDF
    IntroductionIcterus, if not detected, can affect the validity of results delivered by clinical laboratories, leading to erroneous results. This study aims to define bilirubin interference for some biochemical analytes and compare it with the manufacturer’s data. Material and methodsSerum pools prepared with outpatients’ samples were spiked with increasing bilirubin concentration (Merck, reference14370, Darmstadt, Germany) up to 513 µmol/L in order to evaluate the bias for the following biochemical analytes: creatinine (CREA), creatine kinase (CK), cholesterol (CHOL), gamma-glutamyltransferase (GGT), high-density lipoprotein cholesterol (HDL), and total protein (TP). For each analyte, six pools of different concentrations were prepared. Measurements were made employing Cobas 8000 analyser c702-502, Roche Diagnostics (Mannheim, Germany). This study employed a study procedure defined by the Spanish Society of Laboratory Medicine. ResultsObtained bilirubin concentrations producing a negative interference were 103 µmol/L for CHOL, 205 µmol/L for TP and 410 µmol/L for CK, but only for CK values less than 100 U/L. Bilirubin concentrations lower than 513 µmol/L do not produce interference for HDL and GGT. Finally, for the studied bilirubin concentrations, there is no interference for CREA higher than 80 µmol/L. ConclusionIcterus interferences have been defined for each analyte, observing differences compared to data provided by the manufacturer. The evidence indicates that each laboratory should evaluate icteric interferences to ensure the high quality of the delivered results, thus benefiting patient care

    Elimination of lipaemic interference by high-speed centrifugation

    Get PDF
    IntroductionIn order to deliver high quality results, detection and elimination of possible analytical interferences, such as lipaemia, is crucial. The aim of this study is to evaluate the efficacy of high-speed centrifugation in eliminating lipaemic interference and to define own lipaemic index (LI) for the studied biochemical analytes. Materials and methodsEvaluated analytes were: albumin, alkaline phosphatase, alanine-aminotransferase (ALT), aspartate-aminotransferase (AST), calcium, creatinine, gamma-glutamyltransferase (GGT), glucose, phosphates, total proteins, urea and total bilirubin. Those analytes and LIs have been analysed in duplicate in the Roche Diagnostics-c8000 analyser in samples centrifuged at 3000 rpm/10 minutes in the SL16 (Thermo Scientific, Waltham, USA) centrifuge and according to an own high-speed centrifugation protocol (12,900 rpm/15 minutes) in the MicroCL17R (Thermo Scientific, Waltham, USA) centrifuge. Lipaemia has been measured in each sample. The efficiency of high-speed centrifugation is verified by the Wilcoxon test (P < 0.05). In cases where significant differences are observed, our own LI is calculated. For ALT and AST, it is verified by McNemar test (P < 0.05). For creatinine, both Wilcoxon and McNemar test were applied. ResultsThere were statistically significant differences in analyte concentration before and after high-speed centrifugation for: albumin, creatinine, GGT, glucose, phosphates, urea and total bilirrubin. Own LI is calculated. McNemar test shows statistically significant diferences in the proportion of delivered results before and after high-speed centrifugation in ALT, AST and creatinine. ConclusionsThis study confirms the efficacy of high-speed centrifugation protocol for all the considered analytes, excepting calcium, alkaline phosphatase and total proteins

    Entry, dispersion and differentiation of microglia in the developing central nervous system

    Get PDF
    Microglial cells within the developing central nervous system (CNS) originate from mesodermic precursors of hematopoietic lineage that enter the nervous parenchyma from the meninges, ventricular space and/or blood stream. Once in the nervous parenchyma, microglial cells increase in number and disperse throughout the CNS; these cells finally differentiate to become fully ramified microglial cells. In this article we review present knowledge on these phases of microglial development and the factors that probably influence them

    Expression of Inducible Nitric Oxide Synthase (iNOS) in Microglia of the Developing Quail Retina

    Get PDF
    Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid microglia, resulting in a significant iNOS upregulation.This work was supported by grants from Ministerio de Economía y Competitividad, Spain (BFU2010-19981) and Junta de Andalucía, Spain (P07-CVI-03008)

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore