204 research outputs found

    Angular dependence of novel magnetic quantum oscillations in a quasi-two-dimensional multiband Fermi liquid with impurities

    Get PDF
    The semiclassical Lifshitz-Kosevich-type description is given for the angular dependence of quantum oscillations with combination frequencies in a multiband quasi-two-dimensional Fermi liquid with a constant number of electrons. The analytical expressions are found for the Dingle, thermal, spin, and amplitude (Yamaji) reduction factors of the novel combination harmonics, where the latter two strongly oscillate with the direction of the field. At the "magic" angles those factors reduce to the purely two-dimensional expressions given earlier. The combination harmonics are suppressed in the presence of the non-quantized ("background") states, and they decay exponentially faster with temperature and/or disorder compared to the standard harmonics, providing an additional tool for electronic structure determination. The theory is applied to Sr2_2RuO4_4.Comment: 5 pages, 2 figures, minor typos correcte

    In vitro studies on the control of human myometrial gap junctions

    Full text link
    In this study human myometrial tissues were examined for the presence of gap junctions by quantitative electron microscopy before and after incubation in tissue culture media with and without indomethacin. The area of gap junctions was very low in tissues from pregnant women at term but not labor, before incubation. After 24 and 48 h incubation without any treatment, segments of some of the same tissues developed many gap junctions and other tissues contained few junctions. Prostaglandin E (PGE), prostaglandin F (PGF) and prostaglandin F metabolite (PGF metabolite) levels in the media at various times were measured by radioimmunoassay. The prostaglandins increased progressively during the incubation period. Treatment of tissues with indomethacin decreased prostaglandin levels in the media and increased the numbers of gap junctions in those control tissues that developed few junctions over the same incubation interval. We conclude that the capacity of human myometrial tissues to develop gap junctions in vitro may depend upon a maturational stage in preparation for labor. Furthermore, our results suggest that products of the cyclo-oxygenase or lipoxygenase pathways may control the presence of gap junctions in the human myometrium and that changes in synthesis in these patterns may occur as part of the maturational process.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26692/1/0000239.pd

    Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase

    Full text link
    We investigate the upper critical field in a stripe--phase and in the presence of a phenomenological pseudogap. Our results indicate that the formation of stripes affects the Landau orbits and results in an enhancement of Hc2H_{c2}. On the other hand, phenomenologically introduced pseudogap leads to a reduction of the upper critical field. This effect is of particular importance when the magnitude of the gap is of the order of the superconducting transition temperature. We have found that a suppression of the upper critical field takes place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure

    Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)

    Full text link
    The basic known and hypothetic one- and two-element phases of the B-C-N-O system (both superhard phases having diamond and boron structures and precursors to synthesize them) are described. The attention has been given to the structure, basic mechanical properties, and methods to identify and characterize the materials. For some phases that have been recently described in the literature the synthesis conditions at high pressures and temperatures are indicated.Comment: Review on superhard B-C-N-O phase

    Bortezomib maintenance after R-CHOP, cytarabine and autologous stem cell transplantation in newly diagnosed patients with mantle cell lymphoma, results of a randomised phase II HOVON trial

    Get PDF
    Rituximab-containing induction followed by autologous stem cell transplantation (ASCT) is the standard first-line treatment for young mantle cell lymphoma patients. However, most patients relapse after ASCT. We investigated in a randomised phase II study the outcome of a chemo-immuno regimen and ASCT with or without maintenance therapy with bortezomib. Induction consisted of three cycles R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone), two cycles high-dose cytarabine, BEAM (carmustine, etoposide, cytarabine, melphalan) and ASCT. Patients responding were randomised between bortezomib maintenance (1·3 mg/m2 intravenously once every 2 weeks, for 2 years) and observation. Of 135 eligible patients, 115 (85%) proceeded to ASCT, 60 (44%) were randomised. With a median follow-up of 77·5 months for patients still alive, 5-year event-free survival (EFS) was 51% (95% CI 42–59%); 5-year overall survival (OS) was 73% (95% CI 65–80%). The median follow-up of randomised patients still alive was 71·5 months. Patients with bortezomib maintenance had a 5-year EFS of 63% (95% CI 44–78%) and 5-year OS of 90% (95% CI 72–97%). The patients randomised to observation had 5-year PFS of 60% (95% CI, 40–75%) and OS of 90% (95% CI 72–97%). In conclusion, in this phase II study we found no indication of a positive effect of bortezomib maintenance after ASCT

    Spatially heterogeneous ages in glassy dynamics

    Full text link
    We construct a framework for the study of fluctuations in the nonequilibrium relaxation of glassy systems with and without quenched disorder. We study two types of two-time local correlators with the aim of characterizing the heterogeneous evolution: in one case we average the local correlators over histories of the thermal noise, in the other case we simply coarse-grain the local correlators. We explain why the former describe the fingerprint of quenched disorder when it exists, while the latter are linked to noise-induced mesoscopic fluctuations. We predict constraints on the pdfs of the fluctuations of the coarse-grained quantities. We show that locally defined correlations and responses are connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. We argue that large-size heterogeneities in the age of the system survive in the long-time limit. The invariance of the theory under reparametrizations of time underlies these results. We relate the pdfs of local coarse-grained quantities and the theory of dynamic random manifolds. We define a two-time dependent correlation length from the spatial decay of the fluctuations in the two-time local functions. We present numerical tests performed on disordered spin models in finite and infinite dimensions. Finally, we explain how these ideas can be applied to the analysis of the dynamics of other glassy systems that can be either spin models without disorder or atomic and molecular glassy systems.Comment: 47 pages, 60 Fig

    Human Resource Flexibility as a Mediating Variable Between High Performance Work Systems and Performance

    Get PDF
    Much of the human resource management literature has demonstrated the impact of high performance work systems (HPWS) on organizational performance. A new generation of studies is emerging in this literature that recommends the inclusion of mediating variables between HPWS and organizational performance. The increasing rate of dynamism in competitive environments suggests that measures of employee adaptability should be included as a mechanism that may explain the relevance of HPWS to firm competitiveness. On a sample of 226 Spanish firms, the study’s results confirm that HPWS influences performance through its impact on the firm’s human resource (HR) flexibility

    Designing a broad-spectrum integrative approach for cancer prevention and treatment

    Get PDF
    Targeted therapies and the consequent adoption of "personalized" oncology have achieved notablesuccesses in some cancers; however, significant problems remain with this approach. Many targetedtherapies are highly toxic, costs are extremely high, and most patients experience relapse after a fewdisease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistantimmortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are notreliant upon the same mechanisms as those which have been targeted). To address these limitations, aninternational task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspectsof relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a widerange of high-priority targets (74 in total) that could be modified to improve patient outcomes. For thesetargets, corresponding low-toxicity therapeutic approaches were then suggested, many of which werephytochemicals. Proposed actions on each target and all of the approaches were further reviewed forknown effects on other hallmark areas and the tumor microenvironment. Potential contrary or procar-cinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixedevidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of therelationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. Thisnovel approach has potential to be relatively inexpensive, it should help us address stages and types ofcancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for futureresearch is offered

    Titan's cold case files - Outstanding questions after Cassini-Huygens

    Get PDF
    Abstract The entry of the Cassini-Huygens spacecraft into orbit around Saturn in July 2004 marked the start of a golden era in the exploration of Titan, Saturn's giant moon. During the Prime Mission (2004–2008), ground-breaking discoveries were made by the Cassini orbiter including the equatorial dune fields (flyby T3, 2005), northern lakes and seas (T16, 2006), and the large positive and negative ions (T16 & T18, 2006), to name a few. In 2005 the Huygens probe descended through Titan's atmosphere, taking the first close-up pictures of the surface, including large networks of dendritic channels leading to a dried-up seabed, and also obtaining detailed profiles of temperature and gas composition during the atmospheric descent. The discoveries continued through the Equinox Mission (2008–2010) and Solstice Mission (2010–2017) totaling 127 targeted flybys of Titan in all. Now at the end of the mission, we are able to look back on the high-level scientific questions from the start of the mission, and assess the progress that has been made towards answering these. At the same time, new scientific questions regarding Titan have emerged from the discoveries that have been made. In this paper we review a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan's deep interior to the exosphere. Our intention is to help formulate the science goals for the next generation of planetary missions to Titan, and to stimulate new experimental, observational and theoretical investigations in the interim
    • 

    corecore