817 research outputs found

    Hierarchy of piecewise non-linear maps with non-ergodicity behavior

    Full text link
    We study the dynamics of hierarchy of piecewise maps generated by one-parameter families of trigonometric chaotic maps and one-parameter families of elliptic chaotic maps of cn\mathbf{cn} and sn\mathbf{sn} types, in detail. We calculate the Lyapunov exponent and Kolmogorov-Sinai entropy of the these maps with respect to control parameter. Non-ergodicity of these piecewise maps is proven analytically and investigated numerically . The invariant measure of these maps which are not equal to one or zero, appears to be characteristic of non-ergodicity behavior. A quantity of interest is the Kolmogorov-Sinai entropy, where for these maps are smaller than the sum of positive Lyapunov exponents and it confirms the non-ergodicity of the maps.Comment: 18 pages, 8 figure

    Metallaaromaticity - a protean world

    Get PDF
    The nature of magnetically induced current densities (MICD) of metallabenzenes and related compounds has been examined with relativistic DFT calculations to assess the magnetic aromaticity of the molecules. The origin of the total MICD has been analyzed in terms of individual molecular orbital (MO) contributions. Our study reveals that the s-framework of the molecules always makes a diamagnetic contribution to the MICD. On the other hand, p-MOs and Craig–Möbius type p-MOs, i.e., MOs in which the dxy/dxz orbitals of the metal centers change the phase of the wave function akin to a Möbius twist, may not make a diatropic contribution. We have identified metallabenzenes with multiple magnetic aromaticities. In the case of iridabenzenes, s-MICD has been found to decrease dramatically from Ir(III) to Ir(V) systems. Furthermore, a brief examination of some recently synthesized metallapolycycles has shown that the metal center in a given ring can strongly modulate the aromaticity of neighboring rings. Finally, the finding that relatively minor perturbations in the ligand environment of the metal can substantially influence the aromaticity of metallabenzenes and related molecules underscores the protean character of metallaaromaticity and the need for even wider-ranging investigations. Considering the conflicts between magnetic response and ground-state aromaticity criteria (energetic, structural, and electronic criteria), we propose that the term aromatic be used for labeling a molecule if and only if all criteria confirm aromaticity. In other words, neither magnetic nor ground-state criteria are necessary and sufficient conditions for labeling a molecule aromatic

    A sol-gel templating route for the synthesis of hierarchical porous calcium phosphate glasses containing zinc

    Get PDF
    Hierarchical porous phosphate-based glasses (PPG) have great potential in biomedicine. Micropores (pore size 50 nm) facilitate the movement and diffusion of cells and fluids. In addition, the bioresorbability of PPG allows for their complete solubility in body fluid, alongside simultaneous formation of new tissue. Making PPG via the traditional melt-quenching (MQ) synthesis method used for phosphate-based glasses (PG), is not straightforward. Hence, we present here a route for preparing such glasses using a combination of sol-gel (SG) and templating methods. Hierarchical PPG in the P2O5–CaO–Na2O system with the addition of 1, 3 and 5 mol % of Zn2+ were prepared with pore dimensions ranging from the micro-to the macro scales using Pluronic 123 (P123) as a surfactant. The presence of micropores (0.30–0.46 nm), mesopores (1.75–9.35nm) and macropores (163–207 nm) was assessed via synchrotron-based Small-Angle X-ray Scattering (SAXS), with the presence of the latter two confirmed by Scanning Electron Microscopy (SEM). Structural characterisation performed using 31P solid state magic angle spinning nuclear magnetic resonance (MAS NMR) and Fourier Transform Infrared (FTIR) spectroscopies shows the presence of Q2, Q1 and Q0 phosphate species with a predominance of Q1 species in all compositions. Dissolution studies in deionised (DI) water confirm that controlled release of phosphates, Ca2+, Na+ and Zn2+ is achieved over a period of 7 days. In particular, the release of Zn2+ is proportional to its loading, making its delivery particularly easy to control

    Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017

    Get PDF
    Background Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980–2017 and forecast these estimates to 2030 for 195 countries and territories. Methods We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package—a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce age-sex-specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections. Findings Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87–2·04) and has since decreased to 0·95 million deaths (0·91–1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79–3·67) and since then have gradually decreased to 1·94 million (1·63–2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8–39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets. Interpretation Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people living with HIV, it will continue to be a major threat to public health for years to come. The pace of progress needs to be hastened by continuing to expand access to ART and increasing investments in proven HIV prevention initiatives that can be scaled up to have population-level impact

    Adding four-dimensional data assimilation by analysis nudging to the Model for Prediction Across Scales – Atmosphere (version 4.0)

    Get PDF
    The Model for Prediction Across Scales – Atmosphere (MPAS-A) has been modified to allow four-dimensional data assimilation (FDDA) by the nudging of temperature, humidity, and wind toward target values predefined on the MPAS-A computational mesh. The addition of nudging allows MPAS-A to be used as a global-scale meteorological driver for retrospective air quality modeling. The technique of analysis nudging developed for the Penn State/National Center for Atmospheric Research (NCAR) Mesoscale Model, and later applied in the Weather Research and Forecasting model, is implemented in MPAS-A with adaptations for its polygonal Voronoi mesh. Reference fields generated from 1°&thinsp; × &thinsp;1° National Centers for Environmental Prediction (NCEP) FNL (Final) Operational Global Analysis data were used to constrain MPAS-A simulations on a 92–25&thinsp;km variable-resolution mesh with refinement centered over the contiguous United States. Test simulations were conducted for January and July 2013 with and without FDDA, and compared to reference fields and near-surface meteorological observations. The results demonstrate that MPAS-A with analysis nudging has high fidelity to the reference data while still maintaining conservation of mass as in the unmodified model. The results also show that application of FDDA constrains model errors relative to 2&thinsp;m temperature, 2&thinsp;m water vapor mixing ratio, and 10&thinsp;m wind speed such that they continue to be at or below the magnitudes found at the start of each test period.</p

    The permeability and selectivity of nanocomposite membrane of PEBAx 1657/PEI/SiO2 for separation of CO2, N2, O2, CH4 gases: A data set

    Get PDF
    The poly ether-block-amide (PEBAx)/Poly-ether-imide (PEI)/SiO2 nanocomposite membranes were fabricated using the solution casting method and utilized for separation of N2, O2, CH4, and CO2 gases. The effect of SiO2 nanoparticles loading on permeability and selectivity of gases using the nanocomposite membranes was tested. The data showed that the permeability of the gases increased with increasing SiO2 nanoparticle content. dBy adding SiO2 nanoparticles (10 wt%), the permeability of N2, O2, CH4, and CO2 gases elevated from 0.39, 1, 1.83 and 11.1 to 2.01, 1.95, 2.98 and 19.83 Barrer unit, respectively (at a pressure of 2 Bar). In contrast, with increasing SiO2 content the selectivity of the studied gases decreased. The morphology, crystallinity and the functional groups of the fabricated membranes were evaluated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) techniques. The data presented confirm the influence of the nanoparticles on the membrane structure and thus on the permeability and selectivity of the membranes

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Strontium- and calcium-containing, titanium-stabilised phosphate-based glasses with prolonged degradation for orthopaedic tissue engineering.

    Get PDF
    Strontium- and calcium-releasing, titanium-stabilised phosphate-based glasses with a controlled degradation rate are currently under development for orthopaedic tissue engineering applications. Ca and/or Sr were incorporated at varying concentrations in quaternary phosphate-based glasses, in order to promote osteoinduction. Ti was incorporated at a fixed concentration in order to prolong degradation. Glasses of the general formula (P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO) were prepared via the melt-quench technique. The materials were characterised by energy-dispersive X-ray spectroscopy, X-ray diffraction, (31)P magic angle spinning nuclear magnetic resonance, Fourier transform infrared spectroscopy, differential thermal analysis and density determination. The dissolution rate in distilled water was determined by measuring mass loss, ion release and pH change over a two-week period. In addition, the cytocompatibility and alkaline phosphatase activity of an osteoblast-like cell line cultured on the surface of glass discs was assessed. The glasses were shown to be amorphous and contained Q(1), Q(2) and Q(3) species. Fourier transform infrared spectroscopy revealed small changes in the glass structure as Ca was substituted with Sr and differential thermal analysis confirmed a decrease in crystallisation temperature with increasing Sr content. Degradation and ion release studies also showed that mass loss was positively correlated with Sr content. These results were attributed to the lower electronegativity of Sr in comparison to Ca favouring the formation of phosphate-based mineral phases. All compositions supported cell proliferation and survival and induced at least 2.3-fold alkaline phosphatase activity relative to the control. Glass containing 17.5 mol% Sr had 3.6-fold greater alkaline phosphatase activity than the control. The gradual release of Ca and Sr supported osteoinduction, indicating their potential suitability in orthopaedic tissue engineering applications
    corecore