179 research outputs found

    Effects of Al doping on phase transition and thermoelectric properties of β–Zn4Sb3

    Get PDF
    AbstractIn this paper, Al-doped Zn4Sb3 compounds (Zn1-xAlx)4Sb3 (x=0,0.0025,0.005) were prepared by using the method consisting of high-temperature melting, rapid cooling and hot-pressing(300°C) under a high pressure. (Zn1-xAlx)4Sb3 has been investigated by low-temperature internal friction (IF) measurements and DSC respectively, the IF measurements show that there is internal friction-peak between 258K and 263K. The peak intensities become lower for higher frequencies but the peak positions are fixed with increasing frequency. It have the typical IF features of phase transition. DSC measurements show that the phase transition is reversible. With the increase of Al doping the phase transition enthalpy increased, the apparent activation energies increased from about 214KJ/mol to 238KJ/mol, prompted Al doping could partially inhibit the phase transition. In addition, high-temperature thermoelectric properties of (Zn1-xAlx)4Sb3 were investigated. The results indicated that resistively and thermo power of the doped compound (Zn1-xAlx)4Sb3 (x≠0) increased remarkably as compared to that of Zn4Sb3, the power factor of (Zn1-xAlx)4Sb3 increased between room temperature and 420K, but decreased in the hot parts

    Mandarin Chinese modality exclusivity norms

    Get PDF
    Modality exclusivity norms have been developed in different languages for research on the relationship between perceptual and conceptual systems. This paper sets up the first modality exclusivity norms for Chinese, a Sino-Tibetan language with semantics as its orthographically relevant level. The norms are collected through two studies based on Chinese sensory words. The experimental designs take into consideration the morpho-lexical and orthographic structures of Chinese. Study 1 provides a set of norms for Mandarin Chinese single-morpheme words in mean ratings of the extent to which a word is experienced through the five sense modalities. The degrees of modality exclusivity are also provided. The collected norms are further analyzed to examine how sub-lexical orthographic representations of sense modalities in Chinese characters affect speakers’ interpretation of the sensory words. In particular, we found higher modality exclusivity rating for the sense modality explicitly represented by a semantic radical component, as well as higher auditory dominant modality rating for characters with transparent phonetic symbol components. Study 2 presents the mean ratings and modality exclusivity of coordinate disyllabic compounds involving multiple sense modalities. These studies open new perspectives in the study of modality exclusivity. First, links between modality exclusivity and writing systems have been established which has strengthened previous accounts of the influence of orthography in the processing of visual information in reading. Second, a new set of modality exclusivity norms of compounds is proposed to show the competition of influence on modality exclusivity from different linguistic factors and potentially allow such norms to be linked to studies on synesthesia and semantic transparency

    Effect of different doses of dexmedetomidine on lung function and tissue cell apoptosis in a rat model of hyperoxic acute lung injury

    Get PDF
    Purpose: To study the effect of different doses of dexmedetomidine on lung function and lung tissue cell apoptosis in a rat model of hyperoxic acute lung injury. Methods: Five groups of healthy male Sprague-Dawley rats were used: normal rats, untreated hyperoxic rats, and hyperoxic rats given 3 different doses of dexmedetomidine, with 20 rats in each group. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined usingenzyme-linked immunosorbent assay (ELISA). Parietal paraffin cuts were taken from the right upper lobe for measurement of apoptosis using in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and the apoptosis index was calculated. Results: At 24 and 48 h, the levels of IL-6 and TNF-α in the hyperoxia model group were significantly higher than those in the normal control group, and their levels in the middle- and high-dose groups were markedly lowered, relative to untreated hyperoxia rats (p < 0.05). Apoptosis index in the hyperoxia model rats significantly increased, relative to normal rats (p < 0.05). The apoptosis index in the mediumand high-dose groups decreased significantly (p < 0.05). Conclusion: Dexmedetomidine inhibits inflammatory responses caused by high concentration of oxygen inhalation, minimizes lung injury, improves lung function and inhibits lung apoptosis. Keywords: Dexmedetomidine, Hyperoxia, Acute lung injury, Lung function, Apoptosi

    FT4/FT3 ratio: A novel biomarker predicts coronary microvascular dysfunction (CMD) in euthyroid INOCA patients.

    Get PDF
    Background Ischemia and no obstructive coronary artery disease (INOCA) patients who presented coronary microvascular dysfunction (CMD) demonstrate a poor prognosis, yet the risk factors for CMD remain unclear. Subtle changes in thyroid hormone levels within the normal range, especially the free thyroxine (FT4)/free triiodothyronine (FT3) ratio, have been shown to regulate the cardiovascular system. This prospective study investigated the correlation between FT4/FT3 ratio and CMD in euthyroid patients with INOCA. Methods This prospective study (www.chictr.org.cn/, ChiCTR2000037112) recruited patients with myocardial ischemia symptoms who underwent both coronary angiography (CAG) and myocardial perfusion imaging (MPI) with dynamic single-photon emission computed tomography (D-SPECT). INOCA was defined as coronary stenosis< 50% and CMD was defined as coronary flow reserve (CFR)<2.5. All patients were excluded from abnormal thyroid function and thyroid disease history. Results Among 71 INOCA patients (15 [21.1%] CMD), FT4 and FT4/FT3 ratio in CMD group were significantly higher and both showed significantly moderate correlation with CFR (r=-0.25, p=0.03; r=-0.34, p=0.003, respectively). The ROC curve revealed that FT4/FT3 ratio had the highest efficacy for predicting CMD with an optimized cutoff value>3.39 (AUC 0.78, p<0.001, sensitivity, 80.0%; specificity, 71.4%). Multivariate logistic regression showed that FT4/FT3 ratio was an independent predictor of CMD (OR 7.62, 95% CI 1.12-51.89, p=0.038, P for trend=0.006). Conclusion In euthyroid INOCA patients, increased FT4/FT3 ratio levels are associated with the occurrence of CMD, presenting a novel biomarker for improving the risk stratification

    A Comprehensive Survey on Deep Graph Representation Learning

    Full text link
    Graph representation learning aims to effectively encode high-dimensional sparse graph-structured data into low-dimensional dense vectors, which is a fundamental task that has been widely studied in a range of fields, including machine learning and data mining. Classic graph embedding methods follow the basic idea that the embedding vectors of interconnected nodes in the graph can still maintain a relatively close distance, thereby preserving the structural information between the nodes in the graph. However, this is sub-optimal due to: (i) traditional methods have limited model capacity which limits the learning performance; (ii) existing techniques typically rely on unsupervised learning strategies and fail to couple with the latest learning paradigms; (iii) representation learning and downstream tasks are dependent on each other which should be jointly enhanced. With the remarkable success of deep learning, deep graph representation learning has shown great potential and advantages over shallow (traditional) methods, there exist a large number of deep graph representation learning techniques have been proposed in the past decade, especially graph neural networks. In this survey, we conduct a comprehensive survey on current deep graph representation learning algorithms by proposing a new taxonomy of existing state-of-the-art literature. Specifically, we systematically summarize the essential components of graph representation learning and categorize existing approaches by the ways of graph neural network architectures and the most recent advanced learning paradigms. Moreover, this survey also provides the practical and promising applications of deep graph representation learning. Last but not least, we state new perspectives and suggest challenging directions which deserve further investigations in the future

    Public involvement in setting a national research agenda

    Get PDF
    <p>(A) Graphical map of the BLAST results showing nucleotide identity between <i>A</i>. <i>fasciata</i> mitogenome and 15 related species listed in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136297#pone.0136297.t001" target="_blank">Table 1</a>, as generated by the CGView comparison tool (CCT). CCT arranges BLAST result in an order where sequence that is most similar to the reference (<i>A</i>. <i>fasciata</i>) is placed closer to the outer edge of the map. The rings labelled 1 to17 indicate BLAST results of <i>A</i>. <i>fasciata</i> mitogenome against <i>A</i>. <i>chrysaetos</i>, <i>N</i>. <i>nipalensis</i>, <i>N</i>. <i>alboniger</i>, <i>S</i>. <i>cheela</i>, <i>A</i>. <i>monachus</i>, <i>B</i>. <i>lagopus</i>, <i>B</i>. <i>buteo</i>, <i>B</i>. <i>buteo burmanicus</i>, <i>A</i>. <i>soloensis</i>, <i>A</i>. <i>virgatus</i>, <i>A</i>. <i>gentilis</i>, <i>A</i>. <i>nisus</i>, <i>P</i>. <i>haliaetus</i>, <i>S</i>. <i>serpentarius</i>, <i>C</i>. <i>aura</i>, <i>P</i>. <i>badius</i>, and <i>S</i>. <i>leptogrammica</i>, respectively. (B) Nucleotide-based phylogenetic tree of 16 Accipitriformes species, with two Strigiformes birds as outgroups. This analysis is based on 13PCGs. Both ML and Bayesian analyses produced identical tree topologies. The ML bootstrap and Bayesian posterior probability values for each node are indicated.</p

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed
    corecore