9 research outputs found

    Autotoxins in continuous tobacco cropping soils and their management

    Get PDF
    Tobacco belongs to the family Solanaceae, which easily forms continuous cropping obstacles. Continuous cropping exacerbates the accumulation of autotoxins in tobacco rhizospheric soil, affects the normal metabolism and growth of plants, changes soil microecology, and severely reduces the yield and quality of tobacco. In this study, the types and composition of tobacco autotoxins under continuous cropping systems are summarized, and a model is proposed, suggesting that autotoxins can cause toxicity to tobacco plants at the cell level, plant-growth level, and physiological process level, negatively affecting soil microbial life activities, population number, and community structure and disrupting soil microecology. A combined strategy for managing tobacco autotoxicity is proposed based on the breeding of superior varieties, and this approach can be combined with adjustments to cropping systems, the induction of plant immunity, and the optimization of cultivation and biological control measures. Additionally, future research directions are suggested and challenges associated with autotoxicity are provided. This study aims to serve as a reference and provide inspirations needed to develop green and sustainable strategies and alleviate the continuous cropping obstacles of tobacco. It also acts as a reference for resolving continuous cropping challenges in other crops

    Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    Get PDF
    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions

    In vitro micronucleus assay for the analysis of total particulate matterin cigarette smoke: comparison of flow cytometry and laser scanningcytometry with microscopy

    No full text
    The possible genotoxicity of the total particulate matter (TPM) in cigarette smoke has typically been evaluated using the in vitro micronucleus assay. In recent years, automated scoring techniques have been developed to replace the manual counting process in this assay. However, these automated scoring techniques have not been applied in routine genotoxicity assays for the analysis of TPM to improve the assay efficiency. Chinese hamster ovary (CHO) cells were treated with TPM produced from 14 types of cigarettes at five concentrations (25-200. μg/ml) without exogenous metabolic activation. The three following methods were used to score the micronucleus (MN) frequency: (a) flow cytometry with SYTOX and EMA dyes, which differentially stain micronuclei and apoptotic/necrotic chromatin to enhance assay reliability; (b) laser scanning cytometry with FITC and PI dyes, which is a system that combines the analytical capabilities of flow and image cytometry; and (c) visual microcopy with Giemsa dye. The test results obtained using the three methods were compared using correlation analysis. The key findings for this set of compounds include the following: (a) both flow cytometry- and laser scanning cytometry-based methods were effective for MN identification, (b) the three scoring methods could detect dose-dependent micronucleus formation for the 14 types of TPM, and (c) the MN frequencies that were measured in the same samples by flow cytometry, laser scanning cytometry, and visual microscopy were highly correlated, and there were no significant differences (p>. 0.05). In conclusion, both flow cytometry and laser scanning cytometry can be used to evaluate the MN frequency induced by TPM without exogenous metabolic activation. The simpler and faster processing and the high correlation of the results make these two automatic methods appropriate tools for use in in vitro micronucleus assays for the analysis of TPM using CHO cells

    Crystallization and preliminary crystallographic analysis of a chitinase from Clonostachys rosea

    No full text
    A chitinase from the nematophagous fungus C. rosea was overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 1.8 Å resolution

    Preliminary crystallographic study of two cuticle-degrading proteases from the nematophagous fungi Lecanicillium psalliotae and Paecilomyces lilacinus

    No full text
    Two cuticle-degrading proteases Ver112 and PL646 were purified from the nematophagous fungi L. psalliotae and P. lilacinus, respectively. The protease Ver112 and a complex between PL646 and a tetrapeptide inhibitor were crystallized. Diffraction data were collected to 1.65 and 2.2 Å resolution, respectively

    Effects of editing DFR genes on flowers, leaves, and roots of tobacco

    No full text
    Abstract Background DFR is a crucial structural gene in plant flavonoid and polyphenol metabolism, and DFR knockout (DFR-KO) plants may have increased biomass accumulation. It is uncertain whether DFR-KO has comparable effects in tobacco and what the molecular mechanism is. We employed the CRISPR/Cas9 method to generate a knockout homozygous construct and collected samples from various developmental phases for transcriptome and metabolome detection and analysis. Results DFR-KO turned tobacco blossoms white on homozygous tobacco (Nicotiana tabacum) plants with both NtDFR1 and NtDFR2 knockout. RNA-seq investigation of anthesis leaf (LF), anthesis flower (FF), mature leaf (LM), and mature root (RM) variations in wild-type (CK) and DFR-KO lines revealed 2898, 276, 311, and 101 differentially expressed genes (DEGs), respectively. DFR-KO primarily affected leaves during anthesis. According to KEGG and GSEA studies, DFR-KO lines upregulated photosynthetic pathway carbon fixation and downregulated photosystem I and II genes. DFR-KO may diminish tobacco anthesis leaf photosynthetic light reaction but boost dark reaction carbon fixation. DFR-KO lowered the expression of pathway-related genes in LF, such as oxidative phosphorylation and proteasome, while boosting those in the plant–pathogen interaction and MAPK signaling pathways, indicating that it may increase biological stress resistance. DFR-KO greatly boosted the expression of other structural genes involved in phenylpropanoid production in FF, which may account for metabolite accumulation. The metabolome showed that LF overexpressed 8 flavonoid metabolites and FF downregulated 24 flavone metabolites. In DFR-KO LF, proteasome-related genes downregulated 16 amino acid metabolites and reduced free amino acids. Furthermore, the DEG analysis on LM revealed that the impact of DFR-KO on tobacco growth may progressively diminish with time. Conclusion The broad impact of DFR-KO on different phases and organs of tobacco development was thoroughly and methodically investigated in this research. DFR-KO decreased catabolism and photosynthetic light reactions in leaves during the flowering stage while increasing carbon fixation and disease resistance pathways. However, the impact of DFR-KO on tobacco growth steadily declined as it grew and matured, and transcriptional and metabolic modifications were consistent. This work offers a fresh insight and theoretical foundation for tobacco breeding and the development of gene-edited strains

    Guidelines for the use and interpretation of assays for monitoring autophagy

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore