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Tobacco belongs to the family Solanaceae, which easily forms continuous

cropping obstacles. Continuous cropping exacerbates the accumulation of

autotoxins in tobacco rhizospheric soil, affects the normal metabolism and

growth of plants, changes soil microecology, and severely reduces the yield

and quality of tobacco. In this study, the types and composition of tobacco

autotoxins under continuous cropping systems are summarized, and a model is

proposed, suggesting that autotoxins can cause toxicity to tobacco plants at the

cell level, plant-growth level, and physiological process level, negatively affecting

soil microbial life activities, population number, and community structure and

disrupting soil microecology. A combined strategy for managing tobacco

autotoxicity is proposed based on the breeding of superior varieties, and this

approach can be combined with adjustments to cropping systems, the induction

of plant immunity, and the optimization of cultivation and biological control

measures. Additionally, future research directions are suggested and challenges

associated with autotoxicity are provided. This study aims to serve as a reference

and provide inspirations needed to develop green and sustainable strategies and

alleviate the continuous cropping obstacles of tobacco. It also acts as a reference

for resolving continuous cropping challenges in other crops.

KEYWORDS

tobacco, autotoxins, continuous cropping obstacles, soil microorganisms,
management of autotoxicity
1 Introduction

Tobacco is an economically important crop with a long worldwide cultivation history,

and it is widely studied as a significant model plant that helps lay a foundation for
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agricultural biotechnological research (Sierro et al., 2014). Due to

limited farmland areas and a lack of scientific cultivation methods,

continuous tobacco cropping is often subject to continuous

cropping obstacles even in the absence of major challenges such

as pests, fertility, or climate change, and these obstacles cause poor

growth of seedlings and a significant decrease in crop yield and

quality (Chi et al., 2013; Niu et al., 2017). The causes of sustained

decline in tobacco yield and quality are multifaceted, but

autotoxicity is considered the most important influencing factor

(Sun, 2010; Deng et al., 2017b).

Allelopathy broadly exists in the competition of plants and

organisms for light, water, nutrients, and space, exerting an effect on

the renewal of organisms, community succession, and seed

germination in an ecosystem. As a particular form of allelopathy,

autotoxicity affects plant growth in multiple ways, such as

influencing cell membrane permeability, ion absorption,

photosynthesis, and enzymatic activity, making it the major cause

of continuous cropping obstacles for tobacco (Liu et al., 2010;

Zhang et al., 2018; Zhang et al., 2021). Tobacco is fundamentally

different from other crops in that it contains special bioactive

substances, such as the aromatic components in secondary

metabolites, and these causes tobacco to be more susceptible to

allelopathic autotoxicity (Farooq et al., 2014; Deng et al., 2017b).

Soil microorganisms participate in many vital processes in the

dynamics of the soil ecosystem, including the nutrient cycle, organic

matter turnover, soil structure maintenance, and toxin degradation

(Brussaard et al., 2007). Due to the rapid response of soil

microorganisms to environmental changes and agricultural

practices, they are considered a critical biological indicator for the

efficacy of soil fertility and land management measures and are also

known as the second genome of plants (Avidano et al., 2005; Wu

et al., 2017). Changes in soil microflora are closely associated with

continuous cropping obstacles as they significantly impact those

vital processes in the soil ecosystem (Brussaard et al., 2007). The

long-term continuous cropping of tobacco causes changes in

the number of soil microorganisms, an imbalance in soil

microecosystems, and a reduction in soil fertility, thus severely

damaging the physicochemical properties of soil and the ecological

environment. Under such influences, tobacco tends to exhibit

retarded growth, dwarfed plants, reduced leaf area, and worsened

diseases and pests, causing a decline in both yield and quality (Elsas

et al., 2002; Nayyar et al., 2010). Therefore, researching the

interactions between autotoxins and rhizosphere microorganisms

lays a theoretical foundation for identifying the formation

mechanisms of continuous cropping obstacles and the patterns of

succession in the rhizosphere microorganism community.

Currently, tobacco production mainly relies on the application

of pesticides and fertilizers, which not only causes cost increases and

degrade tobacco quality but also pollutes farmland soil and the

water environment, ultimately threatening human health. Research

focusing on inducing plant immunity, improving cultivation

measures, and utilizing microbiological methods to reduce

continuous cropping obstacles during tobacco production can

provide significant guidance and new approaches for seeking

effective technologies that can sustainably improve the growth of

continuously cropped tobacco.
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2 The concept of autotoxins and
component analysis of tobacco
autotoxins

Autotoxins can be generated by plant roots, stems, leaves, and

fruits. These autotoxins contain a variety of carbon-based primary

metabolites and more complex secondary compounds, such as root

exudates, making them the largest inputs of chemical substances

into the rhizosphere (Bertin et al., 2003; Hao et al., 2010; Huang

et al., 2013). Autotoxins are thus considered the largest source of

allelochemicals. These substances can be released into the

environment through aboveground leaching, volatilization, root

secretion, degradation and leaching, and some autotoxins, upon

reaching a certain level of concentration, can cause autotoxicity in

continuously cropped plants (Rial et al., 2014; Hisashi et al., 2017).

Autotoxicity poses a major threat to tobacco plants. On the one

hand, it stimulates the growth of rhizospheric pathogenic bacteria

while inhibiting that of beneficial microorganisms; on the other

hand, it inhibits plant growth by affecting membrane systems,

photosynthesis, and the enzymatic activity of plants, causing an

allelopathic effect and inducing continuous cropping obstacles

(Inderjit et al., 2006; Chen et al., 2022a). To clarify autotoxic and

allelopathic effects, researchers have collected tobacco root

exudates, and isolated, purified, and characterized autotoxins and

evaluated their autotoxicity. Research indicates that autotoxins are

mostly small molecules containing -OH, C=O, and S!O groups.

They have simple structures and are difficult to degrade. These

molecules contain oxygen atoms and easily excited double and

triple bonds and are susceptible to release into the environment

(Zhang et al., 2007b; Yu et al., 2015). Autotoxins are generally

divided into water-soluble organic acids, linear alcohols, aliphatic

aldehydes, and alkenes; simple phenols, benzoic acids, and their

derivatives; simple unsaturated lactones, long-chain fatty acids, and

polyacetylenes; naphthoquinone, anthraquinone, and quinone

compounds; cinnamic acids and their derivatives; coumarins,

tannins, terpenoids, and sterides; amino acids and polypeptides;

alkaloids and cyanohydrins; sulfides and glucosinolates; and purines

and nucleosides (Zhang et al., 2011b; Scavo et al., 2018; Blum, 2019).

Many autotoxins associated with continuous cropping obstacles (p-

hydroxybenzoic acid, homovanillic acid, vanillic acid, vanillin,

cinnamic acid, ferulic acid, cumaric acid, benzoic acid, sesamin,

momilactone B, etc.) have already been studied in different plant

models (Kato-Noguchi et al., 2002; Nakano et al., 2006; Li et al.,

2012; Ni et al., 2012; Yeasmin et al., 2014).

Using soils used for continuous tobacco cropping for 12 years,

researchers comparatively examined the autotoxic potentials and

differences in major chemical components between continuously

cropped soils and controlled samples (Chen et al., 2011a). The study

revealed that the rhizospheric soil of continuously cropped tobacco

and its leach liquor had significant allelopathic autotoxicity against

receiving plants such as lettuce and tobacco seedlings. GC-MS

analysis showed that eight specific substances in the tobacco

rhizospheric soil were associated with allelopathic autotoxicity,

and vanillin showed relatively strong allelopathy; in contrast, only

one alcohol with allelopathic autotoxicity was found in the control
frontiersin.org
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sample (Table 1) (Chen et al., 2011a). The root exudates of tobacco

contain various secondary compounds, and some are capable of

accumulating around the rhizosphere and causing autotoxicity

(Walker et al., 2003; Xie et al., 2007). b-Cembrenediol is

considered as an essential autotoxin in the root metabolites of

tobacco, which affects plant mitosis, enhances the generation of

reactive oxygen and induces oxidative damage, increases the degree

of lipid peroxidation of membranes, inhibits root and stem

elongation, reduces the content of chlorophyll, and causes cell

death (Ren et al., 2017). Substances such as din-butyl phthalate

(DBP) and diisobutyl phthalate (DIBP) have been confirmed to be

major autotoxins. At concentrations greater than 0.5 mmol, both

substances have significant inhibitory effects on seed germination

and seedling growth in tobacco and exhibit a synergistic effect for

autotoxicity (Zhang et al., 2015; Deng et al., 2017a). Similarly,

ferulic acid, benzoic acid, phthalates, and phenolic acids generated

from the degradation of organic residues may be important

autotoxins that cause the degradation of tobacco leaves (Yi et al.,

2012). Furthermore, insect attractants such as muscalure resulting

from the long-term continuous cropping of tobacco can attract

pests and cause damage to tobacco growth (Miao et al., 2004; Chen

et al., 2011a).
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3 Effects of autotoxins on the growth
of tobacco

Autotoxicity is a special type of intraspecific competition, and it

involves interactions between individuals using limited resources,

which usually leads to density dependence or to self-thinning of

plants. Autotoxin types vary by plant types (Tu et al., 2000), and

factors such as the physicochemical properties of soil, abiotic stress,

and microorganisms can cause intra- and interspecies differences in

the types and concentrations of autotoxins. Different stimulation

intensities of the various factors induce plant root systems to release

different substances into the environment (Feng et al., 2010; Qin

et al., 2021), including secretions, exudates, lysates, and mucilage.

Specifically, substances that inhibit the growth of related plants are

called autotoxins (Alıás et al., 2006). Relative to plants in mature

stages, those in the seed germination and seedling growth stages are

considered more important for evaluating autotoxicity processes

(Lara-Núñez et al., 2010; Margot et al., 2012), as plants are more

susceptible to the effect of autotoxins during these stages (Callaway

and Aschehoug, 2000; Callaway and Ridenour, 2004; Weir et al.,

2004). Many autotoxins have been found to affect seed germination,

seedling growth, photosynthesis, nutrient absorption, cell division,

cytoskeleton formation, generation of reactive oxygen species, and

the expression of functional genes (Figure 1)(Inderjit and Duke,

2003; Blum and Gerig, 2005; Zhang et al., 2010a; Soltys et al., 2011).

Autotoxins affect tobacco growth conditions in fields and its

agronomic traits, causing a reduction in growth parameters such as

plant height and leaf area coefficients during the vigorous growing

and budding stages and to poor root growth and development (You

et al., 2015a). Long-term continuous cropping of tobacco leads to an

accumulation of large amounts of autotoxins, causing a decline in

tobacco biomass, yield, and quality; a decrease in tobacco

photosynthesis, transpiration rate, and potassium and sugar

contents; an increase in nicotine content; and a degradation in

aroma quality (Jing and Matsui, 1997; Yu et al., 2000; Chen et al.,

2010; Zhang et al., 2011a; Chen et al., 2022b). A study indicated that

as autotoxins accumulate, the weights of tobacco stems, roots, and

leaves exhibit significant declining trends (Zhang et al., 2007a).

Increasing the time of continuous tobacco cropping leads to a

significant reduction in the total sugar level, reducing sugar and

potassium levels, and to a downward trend of its major economic

trait indicators, leading to adverse effects on smoking quality (Fu

et al., 2018). A number of studies have shown that 1 year of

continuous cropping causes a reduction in the total nitrogen

content of tobacco, 2 years of continuous cropping causes an

upward trend in nicotine content, and 3(+) years of continuous

cropping significantly reduces the percentage of medium-grade

tobacco and its qualities, as well as its Schmuck value, K/Cl ratio,

and sugar-to-nicotine ratio (Jin et al., 2002; Jin et al., 2004; Zhao

et al., 2008). The effect of autotoxins on tobacco varies based on

their concentrations. Among the root metabolites of tobacco,

benzoic acid, cinnamic acid, and p-hydroxybenzoic acid

significantly inhibit the growth of tobacco radicles at

concentrations higher than 100 mg/ml, whereas ferulic acid

significantly inhibits tobacco seed germination, seedling growth,

and radicle elongation (Zhang et al., 2013).
TABLE 1 Autotoxins in tobacco continuous cropping soil (part).

Autotoxins Reference

Syringic acid Chen et al. (2022a)

Vanillic acid Chen et al. (2022a)

p-Hydroxybenzoic acid Chen et al. (2022a)

Ferulic acid Chen et al. (2022a)

Vanillin Chen et al. (2022a)

Digitoxin Chen et al. (2011a)

eCedrol Chen et al. (2011a)

Phytone Chen et al. (2011a)

b-Sitosterol Chen et al. (2011a)

Cholestanol Chen et al. (2011a)

Cholestan-3-one Chen et al. (2011a)

Tricosene Chen et al. (2011a)

b-Cembrenediol Ren et al. (2017)

Dibutyl phthalate Deng et al. (2017a)

Diisooctyl phthalate Deng et al. (2017a)

Cinnamic acid Zhang et al. (2013)

Benzoic acid Zhang et al. (2013)

Di-n-hexyl phthalate Ren et al. (2015)

Bis(2-propylheptyl) phthalate Ren et al. (2015)
Although many studies had identified a substance as autotoxin, only one reference is shown in
the table. As research continues, more and more substances are likely to be identified as
autotoxins, so the title was marked as “part” for autotoxins in tobacco continuous cropping
soil, not “all.”
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4 Interaction between autotoxins and
soil microorganisms
The types and numbers of root exudates, which serve as the

medium for interactions between plants and rhizosphere

microorganisms, are important factors influencing the number,

activity, and diversity of soil microorganisms (Bais et al., 2006).

The carbohydrates, organic acids, amino acids, ectoenzymes, and

autotoxins contained in root exudates not only provide energy,

signaling molecules, and growth substrates for the growth and

reproduction of rhizosphere microorganisms but also exert

selective and facilitating effects on particular microbial

populations (Badri and Vivanco, 2009; Gabriele and Kornelia,

2010; Huang et al., 2014; Rohrbacher and St-Arnaud, 2016). By

regulating nutrient absorption, as well as the growth and

development of plants and soil properties, autotoxins indirectly

control the diversity of rhizosphere microorganisms (Broeckling

et al., 2008). Such changes stimulate root systems to accumulate

more autotoxins, simplifying the microbial population structure of

the rhizospheric soil, reducing the types of dominant soil

microorganisms populations, and making them mainly

concentrated on Acidobacteria (Liu et al., 2016; Li, 2017; Chen

et al., 2018b). In contrast, the dominant soil microorganism

populations in tobacco rotation-cropped fields are primarily

Acidobacteria, g-proteobacteria, and a-proteobacteria, showing a

high level of microbial diversity (Duan et al., 2012). The longer

continuous cropping is practiced, the worse the tobacco diseases

(Chen et al., 2022b). Dysfunctions or variations in the flora of soil
Frontiers in Plant Science 04
microorganisms associated with tobacco plants cause a reduction in

the number, abundance, and diversity of probiotic bacterial

populations in soil (ammonificator and nitrifier), a decrease in

the number of bacteria, and an increase in the number of fungi and

actinomycetes (Wang et al., 2008), inducing a shift in the

continuously cropped soil from highly fertile “bacterial” soil to

less fertile “fungal” soil (Niu et al., 2017). This increases the number

of pathogens and disease morbidity rates of tobacco, causing

continuous cropping obstacles (Figure 1) (Duan et al., 2012).

Black shank disease, tobacco mosaic, root-knot nematode, black

root rot, tobacco black death disease, and tobacco bacterial wilt are

all positively correlated with the accumulation of autotoxins (Zhang

et al., 2011b). Autotoxins such as gallic acid, p-hydroxybenzoic acid,

and ortho-hydroxybenzoic acid also stimulate the germination of

spores of bacteria causing Fusarium wilt and Verticillium wilt

(Zhang et al., 2012b). In addition, the activities of urease, acidic

phosphatase, and saccharase in rhizospheric soil also gradually

decrease, compared with a significant increase in the activity of

catalase (Zhang et al., 2007c).

The accumulation of beneficial rhizospheric substances may be

an important factor in reducing autotoxin-induced damage. As

important components that sustain the productivity of soil,

rhizosphere microorganisms affect the structure, function, and

processes of soil ecosystems (Chen et al., 2022b), inhibit soil-

borne diseases in host plants, increase plant nutrient absorption

and stress resistance, and decompose autotoxins, thereby facilitating

plant growth. Research shows that inoculating plants with

Pseudomonas put ida helps decompose 99.47% of p-

hydroxybenzoic acid in Hoagland’s nutrient solution within 72 h
FIGURE 1

Effects of autotoxins on tobacco and soil microorganisms. Autotoxins affect tobacco at three levels of cell, growth, and physiological processes and
affect soil microorganisms at three levels of life action, population, and community.
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(Chen et al., 2015). Pseudomonas putida, Pseudomonas

nitroreducens, and Rhodotorula glutinis can effectively decompose

ferulic acid, p-hydroxybenzoic acid, and p-hydroxybenzaldehyde

(Zhang et al., 2010b). Micrococcus lylae, Phyllobacterium

myrsinacearum, and Leminorella grimontii can decompose oleic

acid, hexadecanoic acid, and phthalic acid, respectively, and

multistrain bacterial assemblages can achieve a degradation rate

of 66.7% for allelochemicals (Zhao et al., 2016). Small molecular

volatile compounds generated by microbial metabolism spread

quickly in the atmosphere and soil (Hung et al., 2015). For

example, signaling factors such as N-acyl-L-homoserine lactones

significantly upregulate the expression of genes associated with

vegetative storage proteins, g-glutamyl hydrolase, and Rubisco

large proteins, thus increasing the systemic resistance in plants

(Timmusk et al., 2014; Vaishnav et al., 2015). Adipic acid, butyric

acid, 2-undecanone, 7-hexanol, 3-methyl-butanol, and dimethyl

disulfide produced by strains such as Alcaligenes faecalis and

Paraburkholderia phytofirmans have also been confirmed to

facilitate plant growth and induce stress tolerance (Bhattacharyya

and Jha, 2012; Ledger et al., 2016).
5 Management of autotoxicity

The objective of autotoxicity management is to reduce the

production of autotoxins and to increase the elimination of

produced autotoxins. To this end, we propose combined

management strategies (Figure 2).
5.1 Breeding superior varieties

Researching the factors involved in continuous cropping

obstacles and solutions is an essential undertaking for high-

quality tobacco production. Since the implementation of “the

Tobacco Genome Project,” scientists from China have cultivated

batches of tobacco varieties that are easy to cure, have a pleasing

aroma and high quality, produce a steady yield, and are fertilizer

tolerant (Li et al., 2017; Chen et al., 2018a; Luo et al., 2019; Zhang

et al., 2019). The promotion rate of self-breeding seeds has exceeded

80% (Yang et al., 2013; Sun et al., 2016), providing substantial

support for tobacco production and cigarette manufacturers.

Breeding tobacco varieties resistant to autotoxicity is an effective

approach to preventing continuous cropping obstacles (Su et al.,

2019). Utilizing interspecies allelopathy to address continuous

cropping obstacles has become an effective approach (Li et al.,

2018). However, at present, most tobacco planting areas grow

monotonous varieties, lacking varieties that are resistant to

continuous cropping and secrete less autotoxins.
5.2 Adjusting the cropping system

Establishing a reasonable cropping system and strengthening

land maintenance measures can reduce tobacco autotoxicity to

some extent (You et al., 2015b). Researchers have examined the
Frontiers in Plant Science 05
difference in the diversity of soil microflora of tobacco under

different land maintenance measures. They found that adopting

rice straw return to soils significantly boosted microbial diversity in

the rhizospheric soil, reduced the accumulation of phenolic acids

around root systems, and alleviated tobacco autotoxicity. Under

tobacco–rice continuous cropping conditions, ferti l ity

improvement and land maintenance measures in winter increased

the diversity of beneficial microorganisms in the soil. Meanwhile,

returning rice straw to soils also facilitated the growth of

microorganisms that use amines as their carbon source, playing a

significant role in alleviating damage caused by continuous

cropping obstacles and improving tobacco quality (You et al.,

2015b). Corn–tobacco rotational cropping promoted tobacco

growth by increasing the contents of organic matter and nitrogen

in the soil and inhibiting the accumulation of autotoxins and the

occurrence of soil-borne diseases (e.g., tobacco black shank and

tobacco bacterial wilt) (Zhang et al., 2012a; Niu et al., 2017). Studies

also showed that reasonable rotation of alfalfa, corn, and wheat

could significantly improve soil microbial ecology and reduce soil

autotoxin content (Yin et al., 2019). The autotoxicity in the faba

bean were effectively mitigated by the application of nitrogen

fertilizer in a faba bean–wheat intercropping system (Guo et al.,

2021; Cen et al., 2023).
5.3 Inducing plant resistance

Plant immune-induced resistance refers to the use of

endogenous or exogenous substances to activate plant immune

response, generate antibodies, and obtain or improve resistance to

pathogens (Burketova et al., 2015; Liu et al., 2020; Ya Ayba et al.,

2020). These substances are called plant immune inducers and

include protein polypeptides, oligosaccharides, organic acids,

inorganic compounds, and microorganisms (Newman et al., 2013;
FIGURE 2

Five managements of autotoxicity.
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Qiu, 2016; Liu et al., 2020). Plant immune inducers can enter plants

through various routes, causing a change in plant hydroxyproline-

rich glycoprotein (HRGP) and resulting in the deposition of lignin

in cell walls, to physically enhance the resistance of plants to

pathogens (Qiu, 2016; Lavanya et al., 2018). In plants, plant

immune inducers can cause the accumulation of endogenous

hormones, induce plant anaphylaxis (HR), and induce cell death

to resist further colonization by pathogens (Liu et al., 2020).

Alternatively, by interacting with plants, plant immune inducers

can trigger plant PTI and ETI reactions and enhance plant

resistance to pathogens (Dodds and Rathjen, 2010). The early use

of plant immune inducers to activate plant immune response and

enhance plant growth also helps protect plants from autotoxicity. At

the same time, some immune inducers may be used as carbon

sources to recruit beneficial microorganisms that colonize and

inhibit the proliferation of harmful microorganisms, also building

another line of defense against autotoxins on the periphery of plant

roots. Studies have shown that dimethyl disulfide, produced by

Bacillus cereus C1L, can protect tobacco and corn plants against

Botrytis cinerea and Cochliobolus heterostrophus, respectively, when

applied through irrigation under greenhouse conditions (Huang

et al., 2012). Similarly, the combined application of the metabolites

of a Trichoderma sp. and brassinolide reduced gray mold on tomato

leaves by approximately 70.0% (Li et al., 2020).
5.4 Soil and fertilizer management
and adsorption

Soil and fertilizer management is of great significance for

alleviating damage caused by tobacco autotoxicity. Replacing and

deep-plowing soil effectively improves extremely poor-quality soil

and can be highly effective for removing soil autotoxicity, alleviating

biotic or abiotic stresses, and preventing diseases and pests. However,

these measures are not cost-effective, as they can consume colossal

amounts of manpower, material, and financial resources and can

easily cause damage to the soil structure (Wang et al., 2012). The

selective absorption of soil nutrients and the improper use of

fertilizers for successively cropped tobacco can easily lead to an

imbalance in trace elements, causing nutritional deficiencies,

increasing autotoxicity, and decreasing tobacco yield and quality

(Zhang et al., 2015; Li et al., 2018; Chen et al., 2022b). Monitoring

elements in the soil and supplementing Fe, Zn, Se, Mg, and other

trace elements at appropriate times are significant measures for

fertility recovery, for facilitating root growth and development, for

enhancing water- and fertilizer-absorption abilities, and for inhibiting

the release of autotoxins (Xun et al., 2016). Soil fertility improvement

and maintenance help recover the abundance and numbers of

microbial populations. Measures such as the application of organic

fertilizers with the appropriate addition of non-organic fertilizers and

reduction of topdressing help increase soil organic matter, microbial

biomass, and eventually the yield and quality of tobacco (Dubey et al.,

2019; Dubey et al., 2020; Dubey et al., 2021).

Physical adsorption is also used to reduce autotoxicity and

improve plant growth. In recent years, biochar has been used
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mainly in agricultural production as a solid product produced by

the pyrolysis of organic biomass at high temperatures in an anoxic

environment (Elmer and Pignatello, 2011; Xia et al., 2019;

Sadikshya et al., 2020). Biochar can absorb harmful substances

from soils because of its high porosity and large specific surface area

and is widely used for soil improvement (Fang et al., 2020; Wang

et al., 2020a). Biochar application reduces autotoxin content in soils

by adsorption, weakening the autotoxicity on plant growth, and

increases the biomass, growth rate, and sporulation of probiotics

(Wang et al., 2020b; Ma et al., 2021).
5.5 Biological controls

The biological control of autotoxins mainly depends on soil

microorganisms that carry out autotoxin biodegradation (Mao

et al., 2010; Xie and Dai, 2015; Wang et al., 2021). Bacteria

isolated from soils have shown particular abilities to decompose

autotoxins secreted by plants roots, especially when these bacteria

were fed back into the soils from which they were isolated (Shen

et al., 2020; Wang et al., 2021). Therefore, the use of beneficial

microorganisms can also resolve or alleviate autotoxicity.

Inoculation with disease-preventing and growth-promoting

bacteria that are capable of decomposing autotoxins is an

effective, ecological, and environmentally friendly measure to

reduce autotoxins in soils (Su et al., 2020). Pathogenic

microorganisms can change plants’ normal metabolism of major

components such as amino acids, proteins, lipids, carbohydrates,

and nucleic acids and stimulate root secretions (Rojas et al., 2014).

Beneficial microorganisms compete with pathogenic bacteria for

oxygen, water, growth factors, and trace elements and partially limit

the proliferation of soil-borne pathogens through antagonistic

action or mycoparasitism (Landa et al., 2002). For example, the

inoculation of soils with Paenibacillus polymyxa, which has high

levels of antagonism and phosphate-solubilizing activity,

substantially contributes to the improvement of the content of

organic carbon and available phosphorus. The results of

quantitative PCR showed that the total number of bacteria in the

treatment strain group was significantly higher than that in the

control group, whereas the total number of fungi in the former

group was significantly lower than that in the latter group (Sui et al.,

2019). The functions of growth-promoting rhizobacteria, such as

nitrogen fixation, phosphate and potassium solubilization, and

phytohormone synthesis help improve plants’ abilities to absorb

nutritive elements and water. For example, inoculation with

Trichoderma harzianum helps achieve an 80% degradation rate of

six phenolic allelopathic and autotoxic substances produced by

plant roots, such as hydroxybenzoic acid, vanillic acid, and ferulic

acid, to significantly boost plant growth (Chen et al., 2011b). In

addition, the application of compound microbial agents also helps

improve the microflora of continuously cropped soil and

significantly increases enzymatic activity in these soils. In

summary, microbial agents not only alleviate continuous

cropping obstacles but also reduce the environmental pollution

caused by the use of fertilizers and pesticides (Zhao et al., 2016).
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6 Conclusions and prospects

Autotoxicity is a key factor that limits yield and quality

improvements in tobacco, and it is a pressing agricultural

problem to be addressed. In this study, the types and composition

of tobacco autotoxins present under continuous cropping systems

were summarized, and a model for the toxicity of autotoxins toward

tobacco and soil microorganisms was proposed. This study also

proposes a combination of management strategies for remediating

tobacco autotoxicity.

Presently, studies focusing on the action mechanism of

autotoxins have mostly been limited to phenomenological

descriptions. To further explore tobacco–soil–microorganism

interactions and develop more practical preventive measures

against autotoxins, accelerate the promotion of autotoxin

prevention technology, and reduce damage caused by tobacco

autotoxicity, further studies are recommended from the

following perspectives:
Fron
(1) The separation and determination of autotoxins is a

necessary step in the study of autotoxicity. It is important

to develop new and more reliable separation, extraction,

and analysis technologies for autotoxicity. For example,

sediment analysis technology can help identify whether a

substance is autotoxin and monitor the source and dynamic

change law.

(2) The secretion and accumulation of autotoxins causes

tobacco to undergo multiple signal transduction

pathways, and signaling factors such as auxin, gibberellin,

abscisic acid, and cytokinin in tobacco plants are mutually

promotive or inhibitive. The synergistic effects of different

factors still need to be clarified. Research in this direction

will help us gain a more comprehensive understanding of

the regulatory mechanism of autotoxins, thus providing a

theoretical basis for developing reliable autotoxin

degradation approaches.

(3) Presently, the research on autotoxin-degrading bacteria is

largely focused on the degradation rate of autotoxins under

laboratory conditions, and the complex interactions of

autotoxins with different microbiological species and the

effects of critical microorganisms are still not clear.

Moreover, the effects of bacterial strains on hosts in the

field and their synergistic effects with other rhizosphere

microorganisms and rhizospheric autotoxins have been

researched to a much lower extent. Finding beneficial

microflora that stably exist in the tobacco rhizosphere

and analyzing their characteristics and action patterns

using high-throughput sequencing, q-PCR, and other

technologies can provide a theoretical foundation for

better understanding the ecological functions of

autotoxin-degrading bacteria in continuous tobacco

cropping soils. In terms of physical and chemical

degradation of autotoxins, the application potential of

technologies or materials such as microwave, ultraviolet,
tiers in Plant Science 07
and nanomaterials also has not been systematically

evaluated and tested.

(4) While it is not difficult to obtain bacterial strains with

autotoxin-degrading functions, intensive research is still

needed to obtain strains that have high biological activity,

can stably colonize the tobacco rhizosphere, and have a

clear action mechanism, great application prospects, and

good field experimental outcomes. Presently, most studies

have been based on short-term artificial pot culture

simulations, and little research exists on the biological

activity and colonization stability of microorganisms in

the rhizosphere of tobacco in field experiments, as well as

on plant–soil–microorganism interactions and their

industrialization potential.

(5) Some of aromatic compounds (signaling substances) are

also tobacco autotoxins. Thus, improving tobacco quality

may worsen tobacco allelopathy. Identifying the

mechanisms of autotoxin generation, developing

comprehensive measures to degrade autotoxins,

promoting plant growth and regulating soil ecosystems

from agronomic, chemical, and biomanipulative

perspectives, and accelerating the integration and

promotion of such technologies may be a best approach

for addressing tobacco autotoxicity.

(6) The development of gene editing technology based on

CRISPR/Cas9 has provided a powerful tool for the creation

of resistant continuous cropping tobacco varieties. In the

future, targeted gene mutations can be targeted at genes for

the synthesis and secretion of autotoxins, tobacco root

structure genes, nutrient absorption and utilization genes,

and plant defense genes, so as to provide materials for the

cultivation of new continuous cropping-resistant varieties

with reduced autotoxin secretion, rapid plant growth and

development, and outstanding resistance to disease and

continuous cropping.
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