164 research outputs found

    Human collagen Krox up-regulates type I collagen expression in normal and scleroderma fibroblasts through interaction with Sp1 and Sp3 transcription factors.

    Get PDF
    Despite several investigations, the transcriptional mechanisms that regulate the expression of both type I collagen genes (COL1A1 and COL1A2) in either physiological or pathological situations, such as scleroderma, are not completely known. We have investigated the role of hc-Krox transcription factor on type I collagen expression by human dermal fibroblasts. hc-Krox exerted a stimulating effect on type I collagen protein synthesis and enhanced the corresponding mRNA steady-state levels of COL1A1 and COL1A2 in foreskin fibroblasts (FF), adult normal fibroblasts (ANF), and scleroderma fibroblasts (SF). Forced hc-Krox expression was found to up-regulate COL1A1 transcription through a -112/-61-bp sequence in FF, ANF, and SF. Knockdown of hc-Krox by short interfering RNA and decoy strategies confirmed the transactivating effect of hc-Krox and decreased substantially COL1A1 transcription levels in all fibro-blast types. The -112/-61-bp sequence bound specifically hc-Krox but also Sp1 and CBF. Attempts to elucidate the potential interactions between hc-Krox, Sp1, and Sp3 revealed that all of them co-immunoprecipitate from FF cellular extracts when a c-Krox antibody was used and bind to the COL1A1 promoter in chromatin immunoprecipitation assays. Moreover, hc-Krox DNA binding activity to its COL1A1-responsive element is increased in SF, cells producing higher amounts of type I collagen compared with ANF and FF. These data suggest that the regulation of COL1A1 gene transcription in human dermal fibroblasts involves a complex machinery that implicates at least three transcription proteins, hc-Krox, Sp1, and Sp3, which could act in concert to up-regulate COL1A1 transcriptional activity and provide evidence for a pro-fibrotic role of hc-Krox

    Modeling [F-18]MPPF positron emission tomography kinetics for the determination of 5-hydroxytryptamine(1A) receptor concentration with multiinjection

    Full text link
    peer reviewedThe selectivity of [F-18]MPPF (fluorine-18-labeled 4-(2'-methoxyphenyl)-1-[2'-(N-2"-pirydynyl)-p-fluorobenzamido]ethylpiperazine) for serotonergic 5-hydroxytryptamine(1A) (5-HT1A) receptors has been established in animals and humans. The authors quantified the parameters of ligand-receptor exchanges using a double-injection protocol. After injection of a tracer and a coinjection dose of [F-18]MPPF, dynamic positron emission tomography (PET) data Were acquired during a 160-minute session in five healthy males. These PET and magnetic resonance imaging data were coregistered for anatomical identification. A three-compartment model was used to determine six parameters: F-v (vascular fraction). K-1, k(2) (plasma/free compartment exchange rate). k(off). k(on)/V-r (association and dissociation rate), B-max (receptor concentration), and to deduce K-d (apparent equilibrium dissociation rate). The model was fitted with regional PET kinetics and arterial input function corrected for metabolites. Analytical distribution volume and binding potential Were compared With indices generated by Logan-Patlak graphical analysis. The 5HT(1A) specificity for MPPF was evidenced. A B-max of 2.9 pmol/mL and a K-d of 2.8 nmol/L were found in hippocampal regions, K-d and distribution volume in the free compartment were regionally stable. and the Logan binding potential was linearly correlated to B-max. This study confirms the value of MPPF in the investigation of normal and pathologic systems involving the limbic network and 5-HT1A receptors. Standard values can be used for the simulation of simplified protocols

    Procalcitonin levels in acute exacerbation of COPD admitted in ICU: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibiotics are recommended for severe acute exacerbation of chronic obstructive pulmonary disease (AECOPD) admitted to intensive care units (ICU). Serum procalcitonin (PCT) could be a useful tool for selecting patients with a lower probability of developing bacterial infection, but its measurement has not been investigated in this population.</p> <p>Methods</p> <p>We conducted a single center prospective cohort study in consecutive COPD patients admitted to the ICU for AECOPD between September 2005 and September 2006. Sputum samples or tracheal aspirates were tested for the presence of bacteria and viruses. PCT levels were measured at the time of admittance, six hours, and 24 hours using a sensitive immunoassay.</p> <p>Results</p> <p>Thirty nine AECOPD patients were included, 31 of which (79%) required a ventilator support at admission. The median [25%–75% interquartile range] PCT level, assessed in 35/39 patients, was: 0.096 μg/L [IQR, 0.065 to 0.178] at the time of admission, 0.113 μg/L [IQR, 0.074 to 0.548] at six hours, and 0.137 μg/L [IQR, 0.088 to 0.252] at 24 hours. The highest PCT (PCTmax) levels were less than 0.1 μg/L in 14/35 (40%) patients and more than 0.25 μg/L in 10/35 (29%) patients, suggesting low and high probability of bacterial infection, respectively. Five species of bacteria and nine species of viruses were detected in 12/39 (31%) patients. Among the four patients positive for <it>Pseudomonas aeruginosa</it>, one had a PCTmax less than 0.25 μg/L and three had a PCTmax less than 0.1 μg/L. The one patient positive for <it>Haemophilus influenzae </it>had a PCTmax more than 0.25 μg/L. The presence or absence of viruses did not influence PCT at time of admission (0.068 vs 0.098 μg/L respectively, <it>P </it>= 0.80).</p> <p>Conclusion</p> <p>The likelihood of bacterial infection is low among COPD patients admitted to ICU for AECOPD (40% with PCT < 0.1 μg/L) suggesting a possible inappropriate use of antibiotics. Further studies are necessary to assess the impact of a procalcitonin-based therapeutic strategy in critically ill COPD patients.</p

    FGF2 Translationally Induced by Hypoxia Is Involved in Negative and Positive Feedback Loops with HIF-1α

    Get PDF
    BACKGROUND: Fibroblast growth factor 2 (FGF2) is a major angiogenic factor involved in angiogenesis and arteriogenesis, however the regulation of its expression during these processes is poorly documented. FGF2 mRNA contains an internal ribosome entry site (IRES), a translational regulator expected to allow mRNA expression during cellular stress. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we have developed a skin ischemia model in transgenic mice expressing a reporter transgene under the control of the FGF2 IRES. The results reveal that FGF2 is induced at the protein level during ischemia, concomitant with HIF-1alpha induction and a decrease in FGF2 mRNA. In addition, the FGF2 IRES is strongly activated under these ischemic conditions associated with hypoxia, whereas cap-dependent translation is repressed by 4E-BP hypophosphorylation. We also show that up-regulation of FGF2 protein expression in response to hypoxia correlates with the increase of FGF2 IRES activity in vitro, in human retinoblasts 911. The use of siRNAs targeting HIF or FGF2 indicates that FGF2 and HIF-1alpha reciprocally regulate their expression/accumulation, by a negative feedback loop in early hypoxia, followed by a positive feedback loop in late hypoxia. CONCLUSION/SIGNIFICANCE: FGF2 expression is up-regulated in vivo and in vitro in response to hypoxia. Strikingly, this up-regulation is not transcriptional. It seems to occur by an IRES-dependent mechanism, revealing new mechanistic aspects of the hypoxic response. In addition, our data show that FGF2 interacts with HIF-1alpha in a unique crosstalk, with distinct stages in early and late hypoxia. These data reveal the physiological importance of IRES-dependent translation during hypoxic stress and underline the complexity of the cellular response to hypoxia, suggesting a novel role of FGF2 in the regulation of HIF-1alpha during the induction of angiogenesis

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk

    Get PDF
    Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe
    corecore