411 research outputs found
FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded
Summary: An easy-to-use, versatile and freely available graphic web server, FoldIndex© is described: it predicts if a given protein sequence is intrinsically unfolded implementing the algorithm of Uversky and co-workers, which is based on the average residue hydrophobicity and net charge of the sequence. FoldIndex© has an error rate comparable to that of more sophisticated fold prediction methods. Sliding windows permit identification of large regions within a protein that possess folding propensities different from those of the whole protein. Availability: FoldIndex© can be accessed at http://bioportal.weizmann.ac.il/fldbin/findex Contact: [email protected] Supplementary information: http://www.weizmann.ac.il/sb/faculty_pages/Sussman/papers/suppl/Prilusky_200
Abundance of intrinsic disorder in SV-IV, a multifunctional androgen-dependent protein secreted from rat seminal vesicle
The potent immunomodulatory, anti-inflammatory and procoagulant properties of the
protein no. 4 secreted from the rat seminal vesicle epithelium (SV-IV) have been
previously found to be modulated by a supramolecular monomer-trimer equilibrium.
More structural details that integrate experimental data into a predictive framework
have recently been reported. Unfortunately, homology modelling and fold-recognition
strategies were not successful in creating a theoretical model of the structural
organization of SV-IV. It was inferred that the global structure of SV-IV is not similar
to any protein of known three-dimensional structure. Reversing the classical approach
to the sequence-structure-function paradigm, in this paper we report on novel
information obtained by comparing physicochemical parameters of SV-IV with two
datasets made of intrinsically unfolded and ideally globular proteins. In addition, we
have analysed the SV-IV sequence by several publicly available disorder-oriented
predictors. Overall, disorder predictions and a re-examination of existing experimental
data strongly suggest that SV-IV needs large plasticity to efficiently interact with the
different targets that characterize its multifaceted biological function and should be
therefore better classified as an intrinsically disordered protein
Meta-structure correlation in protein space unveils different selection rules for folded and intrinsically disordered proteins
The number of existing protein sequences spans a very small fraction of sequence space. Natural proteins have overcome a strong negative selective pressure to avoid the formation of insoluble aggregates. Stably folded globular proteins and intrinsically disordered proteins (IDP) use alternative solutions to the aggregation problem. While in globular proteins folding minimizes the access to aggregation prone regions IDPs on average display large exposed contact areas. Here, we introduce the concept of average meta-structure correlation map to analyze sequence space. Using this novel conceptual view we show that representative ensembles of folded and ID proteins show distinct characteristics and responds differently to sequence randomization. By studying the way evolutionary constraints act on IDPs to disable a negative function (aggregation) we might gain insight into the mechanisms by which function - enabling information is encoded in IDPs
Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway
The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al
The Cancer/Testis Antigen Prostate-associated Gene 4 (PAGE4) Is a Highly Intrinsically Disordered Protein
The cancer/testis antigens (CTAs) are an important group of heterogeneous proteins that are predominantly expressed in the testis in the normal human adult but are aberrantly expressed in several types of cancers. Prostate-associated gene 4 (PAGE4) is a member of the CT-X family of CTAs that in addition to testis, is highly expressed in the fetal prostate, and may also play an important role both in benign and malignant prostate diseases. However, the function of this gene remains poorly understood. Here, we show that PAGE4 is a highly (100%) intrinsically disordered protein (IDP). The primary protein sequence conforms to the features of a typical IDP sequence and the secondary structure prediction algorithm metaPrDOS strongly supported this prediction. Furthermore, SDS-gel electrophoresis and analytical size exclusion chromatography of the recombinant protein revealed an anomalous behavior characteristic of IDPs. UV circular dichroism (CD) and NMR spectroscopy confirmed that PAGE4 is indeed a highly disordered protein. In further bioinformatic analysis, the PredictNLS algorithm uncovered a potential nuclear localization signal, whereas the algorithm DBS-Pred returned a 99.1% probability that PAGE4 is a DNA-binding protein. Consistent with this prediction, biochemical experiments showed that PAGE4 preferentially binds a GC-rich sequence. Silencing PAGE4 expression induced cell death via apoptosis and in mice carrying PCa xenografts, siRNA-mediated knockdown of the PAGE4 mRNA attenuated tumor growth in vivo. Furthermore, overexpressing PAGE4 protected cells from stress-induced death. To our knowledge, PAGE4 is the first example of a CTA that is an IDP with an anti-apoptotic function
A server and database for dipole moments of proteins
An Internet server at http://bip.weizmann.ac.il/dipol calculates the net charge, dipole moment and mean radius of any 3D protein structure or its constituent peptide chains, and displays the dipole vector superimposed on a ribbon backbone of the protein. The server can also display the angle between the dipole and a selected list of amino acid residues in the protein. When the net charges and dipole moments of ∼12 000 non-homologous PDB biological units (PISCES set), and their unique chains of length 50 residues or longer, were examined, the great majority of both charges and dipoles fell into a very narrow range of values, with long extended tails containing a few extreme outliers. In general, there is no obvious relation between a protein's charge or dipole moment and its structure or function, so that its electrostatic properties are highly specific to the particular protein, except that the majority of chains with very large positive charges or dipoles bind to ribosomes or interact with nucleic acids
Allosteric Modulators of Steroid Hormone Receptors : Structural Dynamics and Gene Regulation
Peer reviewedPublisher PD
Proteopedia - a scientific 'wiki' bridging the rift between three-dimensional structure and function of biomacromolecules
Proteopedia is an interactive wiki-style web resource that presents 3D structural and functional information in a user-friendly manner and allows real-time community annotation
SPACE: a suite of tools for protein structure prediction and analysis based on complementarity and environment
We describe a suite of SPACE tools for analysis and prediction of structures of biomolecules and their complexes. LPC/CSU software provides a common definition of inter-atomic contacts and complementarity of contacting surfaces to analyze protein structure and complexes. In the current version of LPC/CSU, analyses of water molecules and nucleic acids have been added, together with improved and expanded visualization options using Chime or Java based Jmol. The SPACE suite includes servers and programs for: structural analysis of point mutations (MutaProt); side chain modeling based on surface complementarity (SCCOMP); building a crystal environment and analysis of crystal contacts (CryCo); construction and analysis of protein contact maps (CMA) and molecular docking software (LIGIN). The SPACE suite is accessed at 
- …
