299 research outputs found

    Anti-apoptotic seminal vesicle protein IV inhibits cell-mediated immunity.

    Get PDF
    The in vitro effect of seminal vesicle protein IV (SV-IV) on the cytotoxic activity of human natural or acquired cellular immunity has been investigated by standard immunological procedures, a 51Cr-release cytotoxicity assay, and labeled-ligand binding experiments. The data obtained demonstrate that: (1) fluoresceinated or [125I]-labeled SV-IV binds specifically to the surface of human purified non-adherent monuclear cells (NA-MNC); (2)SV-IV suppresses the cytotoxicity of natural killer (NK) cells against K562 target cells, that of IL-2-stimulated NK (LAK) cells against DAUDI target cells, and that of VEL antigen-sensitized cytotoxic T lymphocytes (CTLs) against VEL target cells; (3) treatment of K562 target cells alone with SV-IV decreases their susceptibility to NK-induced lysis. These findings indicate that the protein SV-IV has a marked in vitro inhibitory effect on NK, LAK and CTL cytotoxicity, providing a better understanding of its immune regulatory functions

    Regulation of protein synthesis at the translational level in neuroblastoma cells.

    Full text link

    Abundance of intrinsic disorder in SV-IV, a multifunctional androgen-dependent protein secreted from rat seminal vesicle

    Get PDF
    The potent immunomodulatory, anti-inflammatory and procoagulant properties of the
protein no. 4 secreted from the rat seminal vesicle epithelium (SV-IV) have been
previously found to be modulated by a supramolecular monomer-trimer equilibrium.
More structural details that integrate experimental data into a predictive framework
have recently been reported. Unfortunately, homology modelling and fold-recognition
strategies were not successful in creating a theoretical model of the structural
organization of SV-IV. It was inferred that the global structure of SV-IV is not similar
to any protein of known three-dimensional structure. Reversing the classical approach
to the sequence-structure-function paradigm, in this paper we report on novel
information obtained by comparing physicochemical parameters of SV-IV with two
datasets made of intrinsically unfolded and ideally globular proteins. In addition, we
have analysed the SV-IV sequence by several publicly available disorder-oriented
predictors. Overall, disorder predictions and a re-examination of existing experimental
data strongly suggest that SV-IV needs large plasticity to efficiently interact with the
different targets that characterize its multifaceted biological function and should be
therefore better classified as an intrinsically disordered protein

    Antiapoptotic Seminal Vesicle Protein IV Induces Histamine Release from Human FcΔRI+ Cells.

    Get PDF
    BACKGROUND: Seminal vesicle protein number 4 (SV-IV) is a small, basic, multifunctional, intrinsically disordered secretory protein synthesized in large amounts by rat seminal vesicle epithelium under androgen transcriptional control. SV-IV-immunorelated proteins occur in other rat tissues and in humans. METHODS: The in vitro effect of SV-IV on human FcepsilonRI+ cells was investigated by standard immunologic, biochemical and molecular biology procedures. RESULTS: SV-IV-induced histamine release from human basophils and lung mast cells without any influence on leukotriene C(4) release and cell migration. The histamine release rate was slower compared with that induced by anti-IgE, the temperature dependence of the event being similar. SV-IV-induced histamine release was Ca2+-dependent, suggesting a physiological interaction of the protein with FcepsilonRI+ cells. SV-IV and anti-IgE acted synergistically on the histamine release. SV-IV did not induce de novo synthesis of cytokines and growth factors (transforming growth factor-beta(1), interleukin-10, interleukin-13, tumor necrosis factor-alpha, vascular endothelial growth factor A) in FcΔRI+ cells. CONCLUSIONS: SV-IV protein induces in human FcΔRI+ cells the release of histamine, a proinflammatory, antiapoptotic and immunosuppressive biogenic amine. These data: (1) are consistent with the antiapoptotic and immunosuppressive properties of SV-IV; (2) confirm a regulatory feature of SV-IV on mammal inflammatory reactivity by either inhibiting the arachidonate cascade pathway or stimulating proinflammatory cytokine release from lymphocyte/monocytes and histamine from FcΔRI+ cells; (3) raise the possibility of a protective role of SV-IV on implanting hemiallogenic blastocysts against maternal reactive oxygen species and immunological attacks at the uterine implantation site

    Survivin promoter -31G/C polymorphism in oral cancer cell lines.

    Get PDF
    Survivin (SVV) is a protein that belongs to the inhibitor of apoptosis proteins (IAP) family and is involved in the G2/M phase progression of the cell cycle as a spindle-associated molecule. The biological features of this protein are well documented and its activity appears to be involved in mitochondria-dependent and -independent antiapoptotic pathways. Overexpression of SVV at the transcriptional and translational level has been associated with cancer, a multifactorial disorder in which the occurrence of a -31G to C polymorphism in the promoter region may significantly contribute to the development of this pathology. To verify this hypothesis, the occurrence of a single nucleotide polymorphism (SNP) in cis-acting cell cycle-dependent elements (CDEs) and in cell cycle homology regions (CHRs) of the survivin TATA-less promoter was investigated. A total of 23 oral squamous cell carcinoma (OSCC) cell lines and normal epithelium-derived normal human epidermal keratinocyte (NHEK) cell lines were analyzed by RFLP and direct DNA sequencing of their promoter region. Furthermore, survivin expression at the transcriptional and translational levels was evaluated in these cells by RT-PCR and Western blotting, respectively. The findings indicate that the presence of a G or C allele is not directly correlated to survivin expression, at the mRNA or at the protein level, at least in the OSCC lines analyzed in this study

    Mediazione di affari e contratto di mediazione

    No full text
    Dottorato di ricerca in diritto comune patrimoniale. 7. cicloConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    • 

    corecore