563 research outputs found
Groundwater Contamination and Pollution Prone Zones of Northern Part of Yale Mallappa Shetty Kere (YMSK) Watershed, Bangalore North using Remote Sensing and GIS
Hydro-Geochemical study of part of Yale Mallappa Shetty Kere (YMSK) watershed comprising two adjacent third order basins has been carried out. There are Twenty one water bodies including two major tanks viz., Singanayakanahalli kere and Gantiganahalli in the study area. Basin morphometry, geology, soil, slope, land use / land cover, transmissivity, depth to first fracture, depth to second fracture, depth to third fracture, resultant layers of Electrical Resistivity Survey which includes Resistivity of Soil, weathered zone, Bedrock, thickness of soil and weathered zone studied in detail using experimental data, Remote Sensing and GIS. Land use/ land cover both regional and around the contaminated bore wells have been studied. Nine borewell water samples collected and analysed for their physico-chemical parameters to understand the groundwater quality. Heavy metals like lead, zinc, copper, Iron, cadmium also analysed. Iron and Nitrate crosses the permissible limit in two bore wells. The details of land use / land cover around the bore wells have been used to identify the sources of contamination. The presence of big factories as well as small scale industries, agricultural practices, waste dumpsites, residential patches, vehicular traffic, vehicle garages, gasoline stations, quarries, air base, firing ranges, air traffic, asphalt manufacturing units, solar lamp manufacturing unit in and around the study area is playing a devil role in contaminating the water. Pollution Prone Zones have been delineated and validated. A comparative analysis of contaminated region and pollution prone zones has been made and it is matching with marginal exception
Study of Urbanization and its Effect on Water Resources in Yale Mallappa Shetty Kere Watershed, Bangalore North Taluk Using Remote Sensing and GIS
The study area comprises of Hebbal and Rachenahalli valley. The present condition of storm water drains, surface water bodies and the quality of the ground water has been studied in Yale mallappa Shetty Kere (YMSK) watershed. 1st order streams are encroached in developing of layouts and surface water bodies vanished due to urbanization. The study of toposheets (1:50,000) reveals YMSK consists of 86 Water bodies (WB) in 286 km2. The study of toposheets in 1:25,000 and Remote Sensing data reveals that YMSK consists of 195 WB (including tiny water bodies). The urbanized area covers the town places like satellite town Yalahanka in the North; Hebbal in the south-east and Krishna Rajapuram in the west. The effect of urbanization has created the havoc in managing and maintaining the storm water drains, surface water and quality of ground water. RS & GIS has effectively used in findings for streams encroachment & LU-LC process
Multifarious transparent glass nanocrystal composites
Glasses comprising well known ferroelectric crystalline phases have been a subject of curious investigation from the point of view of exploiting these composites for dielectric, pyroelectric, ferroelectric, electro and non-linear optical devices. Transparent glass-ceramics containing ferroelectric crystallites at nano scale have been of much interest owing to their promising physical properties. The advantages that are associated with glass-ceramics include very low levels of porosity and hence high break down voltages. It is of our interest to nanocrystallize Aurivillius family of ferroelectric oxides and tetragonal tungsten bronzes on borate and tellurite based glass matrices and demonstrate their promising optical and nonlinear optical properties. Apart from the above, the nanocrystallites of well known ferroelectric material LiNbO3 was grown in a reactive glass matrix. These nanocrystals of LiNbO3 exhibited intense second harmonic signals in transmission mode when exposed to IR light at 1064 nm. The most interesting result was the demonstration of optical diffraction of the second harmonic signals which was attributed to the presence of self- organized sub-micrometer sized LiNbO3 crystallites that were indeed inscribed by the IR laser light which was used to probe in the NLO property of these materials
Production, purification, and characterization of thermostable alkaline xylanase from Anoxybacillus kamchatkensis NASTPD13
Anoxybacillus kamchatkensis NASTPD13 used herein as a source for thermostable alkaline xylanase were isolated from Paudwar Hot Springs, Nepal. NASTPD13 cultured at 60°C, pH 7 and in presence of inorganic (ammonium sulfate) or organic (yeast extract) nitrogen sources, produced maximum xylanase enzyme. Xylanase production in the cultures was monitored by following the ability of culture media to hydrolyze beech wood xylan producing xylooligosaccharide and xylose by thin layer chromatography (TLC). The extracellular xylanase was isolated from optimized A. kamchatkensis NASTPD13 cultures by ammonium sulfate (80%) precipitation; the enriched xylanase preparation was dialyzed and purified using Sephadex G100 column chromatography. The purified xylanaseshowed 11-fold enrichment with a specific activity of 33 U/mg and molecular weight were37 kDa based on SDS-PAGE and PAGE-Zymography. The optimum pH and temperature of purified xylanase was 9.0 and 65°C respectively retainingmore than 50% of its maximal activity over a broad range of pH (6–9) and temperature (30–65°C). With beech wood xylan, the enzyme showed Km 0.7 mg/ml and Vmax 66.64 μM/min/mg The xylanase described herein is a secretory enzyme produced in large quantities by NASTPD13 and is a novel thermostable, alkaline xylanase with potential biotechnological applications.Scopu
Biomimetic Ghost Nanomedicine-Based Optotheranostics for Cancer
Publisher Copyright: © 2024 The Authors. Published by American Chemical Society.Theranostic medicine combines diagnostics and therapeutics, focusing on solid tumors at minimal doses. Optically activated photosensitizers are significant examples owing to their photophysical and chemical properties. Several optotheranostics have been tested that convert light to imaging signals, therapeutic radicals, and heat. Upon light exposure, conjugated photosensitizers kill tumor cells by producing reactive oxygen species and heat or by releasing cancer antigens. Despite clinical trials, these molecularly conjugated photosensitizers require protection from their surroundings and a localized direction for site-specific delivery during blood circulation. Therefore, cell membrane biomimetic ghosts have been proposed for precise and safe delivery of these optically active large molecules, which are clinically relevant because of their biocompatibility, long circulation time, bypass of immune cell recognition, and targeting ability. This review focuses on the role of biomimetic nanoparticles in the treatment and diagnosis of tumors through light-mediated diagnostics and therapy, providing insights into their preclinical and clinical status.publishersversioninpres
Application of Structure Equation Modeling for Inferring a Serial Transcriptional Regulation in Yeast
Revealing the gene regulatory systems among DNA and proteins in living cells is one of the central aims of systems biology. In this study, I used Structural Equation Modeling (SEM) in combination with stepwise factor analysis to infer the protein-DNA interactions for gene expression control from only gene expression profiles, in the absence of protein information. I applied my approach to infer the causalities within the well-studied serial transcriptional regulation composed of GAL-related genes in yeast. This allowed me to reveal the hierarchy of serial transcriptional regulation, including previously unclear protein-DNA interactions. The validity of the constructed model was demonstrated by comparing the results with previous reports describing the regulation of the transcription factors. Furthermore, the model revealed combinatory regulation by Gal4p and Gal80p. In this study, the target genes were divided into three types: those regulated by one factor and those controlled by a combination of two factors
Dynamics of Coronal Bright Points as seen by Sun Watcher using Active Pixel System detector and Image Processing (SWAP), Atmospheric Imaging Assembly AIA), and Helioseismic and Magnetic Imager (HMI)
The \textit{Sun Watcher using Active Pixel system detector and Image
Processing}(SWAP) on board the \textit{PRoject for OnBoard Autonomy\todash 2}
(PROBA\todash 2) spacecraft provides images of the solar corona in EUV channel
centered at 174 \AA. These data, together with \textit{Atmospheric Imaging
Assembly} (AIA) and the \textit{Helioseismic and Magnetic Imager} (HMI) on
board \textit{Solar Dynamics Observatory} (SDO), are used to study the dynamics
of coronal bright points. The evolution of the magnetic polarities and
associated changes in morphology are studied using magnetograms and
multi-wavelength imaging. The morphology of the bright points seen in
low-resolution SWAP images and high-resolution AIA images show different
structures, whereas the intensity variations with time show similar trends in
both SWAP 174 and AIA 171 channels. We observe that bright points are seen in
EUV channels corresponding to a magnetic-flux of the order of Mx. We
find that there exists a good correlation between total emission from the
bright point in several UV\todash EUV channels and total unsigned photospheric
magnetic flux above certain thresholds. The bright points also show periodic
brightenings and we have attempted to find the oscillation periods in bright
points and their connection to magnetic flux changes. The observed periods are
generally long (10\todash 25 minutes) and there is an indication that the
intensity oscillations may be generated by repeated magnetic reconnection
Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at TeV
The elliptic, , triangular, , and quadrangular, , azimuthal
anisotropic flow coefficients are measured for unidentified charged particles,
pions and (anti-)protons in Pb-Pb collisions at TeV
with the ALICE detector at the Large Hadron Collider. Results obtained with the
event plane and four-particle cumulant methods are reported for the
pseudo-rapidity range at different collision centralities and as a
function of transverse momentum, , out to GeV/.
The observed non-zero elliptic and triangular flow depends only weakly on
transverse momentum for GeV/. The small dependence
of the difference between elliptic flow results obtained from the event plane
and four-particle cumulant methods suggests a common origin of flow
fluctuations up to GeV/. The magnitude of the (anti-)proton
elliptic and triangular flow is larger than that of pions out to at least
GeV/ indicating that the particle type dependence persists out
to high .Comment: 16 pages, 5 captioned figures, authors from page 11, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at TeV
The inclusive transverse momentum () distributions of primary
charged particles are measured in the pseudo-rapidity range as a
function of event centrality in Pb-Pb collisions at
TeV with ALICE at the LHC. The data are presented in the range
GeV/ for nine centrality intervals from 70-80% to 0-5%.
The Pb-Pb spectra are presented in terms of the nuclear modification factor
using a pp reference spectrum measured at the same collision
energy. We observe that the suppression of high- particles strongly
depends on event centrality. In central collisions (0-5%) the yield is most
suppressed with at -7 GeV/. Above
GeV/, there is a significant rise in the nuclear modification
factor, which reaches for GeV/. In
peripheral collisions (70-80%), the suppression is weaker with almost independently of . The measured nuclear
modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/284
Measurement of charm production at central rapidity in proton-proton collisions at TeV
The -differential production cross sections of the prompt (B
feed-down subtracted) charmed mesons D, D, and D in the rapidity
range , and for transverse momentum GeV/, were
measured in proton-proton collisions at TeV with the ALICE
detector at the Large Hadron Collider. The analysis exploited the hadronic
decays DK, DK, DD, and their charge conjugates, and was performed on a
nb event sample collected in 2011 with a
minimum-bias trigger. The total charm production cross section at TeV and at 7 TeV was evaluated by extrapolating to the full phase space
the -differential production cross sections at TeV
and our previous measurements at TeV. The results were compared
to existing measurements and to perturbative-QCD calculations. The fraction of
cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/307
- …