55 research outputs found

    Comparison between high- and low-intensity eccentric cycling of equal mechanical work for muscle damage and the repeated bout effect

    Get PDF
    Purpose: We compared high- and low-intensity eccentric cycling (ECC) with the same mechanical work for changes in muscle function and muscle soreness, and examined the changes after subsequent high-intensity ECC. Methods: Twenty men performed either high-intensity ECC (1 min × 5 at 20% of peak power output: PPO) for two bouts separated by 2 weeks (H–H, n = 11), or low-intensity (4 min × 5 at 5% PPO) for the first and high-intensity ECC for the second bout (L–H, n = 9). Changes in indirect muscle damage markers were compared between groups and bouts. Results: At 24 h after the first bout, both groups showed similar decreases in maximal isometric (70° knee angle, − 10.6 ± 11.8%) and isokinetic (− 11.0 ± 8.2%) contraction torque of the knee extensors (KE), squat (− 7.7 ± 10.4%) and counter-movement jump (− 5.9 ± 8.4%) heights (p \u3c 0.05). Changes in KE torque and jump height were smaller after the second than the first bout for both the groups (p \u3c 0.05). Increases in plasma creatine kinase activity were small, and no significant changes in vastus lateralis or intermedius thickness nor ultrasound echo-intensity were observed. KE soreness with palpation was greater (p \u3c 0.01) in H–H (peak: 4.2 ± 1.0) than L–H (1.4 ± 0.6) after the first bout, but greater in L–H (3.6 ± 0.9) than H–H (1.5 ± 0.5) after the second bout. This was also found for muscle soreness with squat, KE stretch and gluteal palpation. Conclusion: The high- and low-intensity ECC with matched mechanical work induced similar decreases in muscle function, but DOMS was greater after high-intensity ECC, which may be due to greater extracellular matrix damage and inflammation. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature

    Changes in plasma hydroxyproline and plasma cell-free DNA concentrations after higher- versus lower-intensity eccentric cycling

    Get PDF
    Purpose: We examined changes in plasma creatine kinase (CK) activity, hydroxyproline and cell-free DNA (cfDNA) concentrations in relation to changes in maximum voluntary isometric contraction (MVIC) torque and delayed-onset muscle soreness (DOMS) following a session of volume-matched higher- (HI) versus lower-intensity (LI) eccentric cycling exercise. Methods: Healthy young men performed either 5 × 1-min HI at 20% of peak power output (n = 11) or 5 × 4-min LI eccentric cycling at 5% of peak power output (n = 9). Changes in knee extensor MVIC torque, DOMS, plasma CK activity, and hydroxyproline and cfDNA concentrations before, immediately after, and 24–72 h post-exercise were compared between groups. Results: Plasma CK activity increased post-exercise (141 ± 73.5%) and MVIC torque decreased from immediately (13.3 ± 7.8%) to 48 h (6.7 ± 13.5%) post-exercise (P \u3c 0.05), without significant differences between groups. DOMS was greater after HI (peak: 4.5 ± 3.0 on a 10-point scale) than LI (1.2 ± 1.0). Hydroxyproline concentration increased 40–53% at 24–72 h after both LI and HI (P \u3c 0.05). cfDNA concentration increased immediately after HI only (2.3 ± 0.9-fold, P \u3c 0.001), with a significant difference between groups (P = 0.002). Lack of detectable methylated HOXD4 indicated that the cfDNA was not derived from skeletal muscle. No significant correlations were evident between the magnitude of change in the measures, but the cfDNA increase immediately post-exercise was correlated with the maximal change in heart rate during exercise (r = 0.513, P = 0.025). Conclusion: Changes in plasma hydroxyproline and cfDNA concentrations were not associated with muscle fiber damage, but the increased hydroxyproline in both groups suggests increased collagen turnover. cfDNA may be a useful metabolic-intensity exercise marker

    The stability of the deadlift three repetition maximum

    Get PDF
    This study investigated the stability of three repetition maximum (3RM) strength during the deadlift. Eleven participants performed four testing sessions comprising a one repetition maximum test and 3RM tests separated by 48 h. Preparedness was assessed before each testing session using countermovement jumps and by measuring barbell velocity during each set of deadlifts. Trivial statistically significant differences were determined for the 3RM between T1 and both T2 ( p = 0.012; ES [95% CI] = −0.1 [−0.58, 0.41]) and T3 ( p = 0.027; ES [95% CI] = −0.09 [−0.57, −0.43]). No significant differences were noted between T2 and T3 ( p = 0.595; ES [95% CI] = 0.01 [−0.49, 0.50]). No significant differences in jump height ( p = 0.071), time-to-take-off ( p = 0.862), eccentric displacement ( p = 0.209), or mean force during any countermovement jump sub-phase were found between each session ( p = 0.529–0.913). Small differences in barbell mean velocity were found between both T1–T2 (effect size statistics (ES) = −0.21–0.27) and T2–T3 (ES = 0.31–0.48), while trivial differences were found at others. Therefore, 3RM deadlift strength appears stable enough over a microcycle to continue using traditionally recommended heavy/light programming strategies

    Changes in deadlift six repetition maximum, countermovement jump performance, barbell velocity, and perceived exertion over the duration of a microcycle

    Get PDF
    The primary aim of this study was to investigate the stability of the six-repetition maximum (6RM) deadlift over the length of a five-day microcycle and whether the fatigue induced by maximal effort testing detrimentally impacted preparedness. Twelve participants performed four testing sessions, comprising a one-repetition maximum test and three 6RM tests separated by 48 hours. Countermovement jumps were performed before each testing session, and barbell velocity was measured during each warm-up set to assess changes in preparedness. The 6RM deadlift was not statistically different between any of the testing sessions ( p = .056; ηp2 = 0.251). Similarly, there were no significant differences in jump height or other CMJ variables between sessions ( p > .05). There were small to moderate differences in mean barbell velocity between the first and second 6RM test ( g = 0.24–0.88), while there were only small differences in mean velocity (MV) between the second and third 6RM test at some of the warm-up loads (40% 6RM: g = 0.20; 80% 6RM: g = −0.47). Taken collectively, these data indicate that 6RM deadlift strength is stable over five days and does not appear to induce sufficient fatigue to impact vertical jump performance or rating of perceived exertion despite some changes in barbell velocity

    \u3cem\u3eABCC9\u3c/em\u3e Gene Polymorphism Is Associated with Hippocampal Sclerosis of Aging Pathology

    Get PDF
    Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity brain disease in the elderly but risk factors are largely unknown. We report the first genome-wide association study (GWAS) with HS-Aging pathology as an endophenotype. In collaboration with the Alzheimer\u27s Disease Genetics Consortium, data were analyzed from large autopsy cohorts: (#1) National Alzheimer\u27s Coordinating Center (NACC); (#2) Rush University Religious Orders Study and Memory and Aging Project; (#3) Group Health Research Institute Adult Changes in Thought study; (#4) University of California at Irvine 90+ Study; and (#5) University of Kentucky Alzheimer\u27s Disease Center. Altogether, 363 HS-Aging cases and 2,303 controls, all pathologically confirmed, provided statistical power to test for risk alleles with large effect size. A two-tier study design included GWAS from cohorts #1-3 (Stage I) to identify promising SNP candidates, followed by focused evaluation of particular SNPs in cohorts #4-5 (Stage II). Polymorphism in the ATP-binding cassette, sub-family C member 9 (ABCC9) gene, also known as sulfonylurea receptor 2, was associated with HS-Aging pathology. In the meta-analyzed Stage I GWAS, ABCC9 polymorphisms yielded the lowest p values, and factoring in the Stage II results, the meta-analyzed risk SNP (rs704178:G) attained genome-wide statistical significance (p = 1.4 × 10-9), with odds ratio (OR) of 2.13 (recessive mode of inheritance). For SNPs previously linked to hippocampal sclerosis, meta-analyses of Stage I results show OR = 1.16 for rs5848 (GRN) and OR = 1.22 rs1990622 (TMEM106B), with the risk alleles as previously described. Sulfonylureas, a widely prescribed drug class used to treat diabetes, also modify human ABCC9 protein function. A subsample of patients from the NACC database (n = 624) were identified who were older than age 85 at death with known drug history. Controlling for important confounders such as diabetes itself, exposure to a sulfonylurea drug was associated with risk for HS-Aging pathology (p = 0.03). Thus, we describe a novel and targetable dementia risk factor

    CodonTest: Modeling Amino Acid Substitution Preferences in Coding Sequences

    Get PDF
    Codon models of evolution have facilitated the interpretation of selective forces operating on genomes. These models, however, assume a single rate of non-synonymous substitution irrespective of the nature of amino acids being exchanged. Recent developments have shown that models which allow for amino acid pairs to have independent rates of substitution offer improved fit over single rate models. However, these approaches have been limited by the necessity for large alignments in their estimation. An alternative approach is to assume that substitution rates between amino acid pairs can be subdivided into rate classes, dependent on the information content of the alignment. However, given the combinatorially large number of such models, an efficient model search strategy is needed. Here we develop a Genetic Algorithm (GA) method for the estimation of such models. A GA is used to assign amino acid substitution pairs to a series of rate classes, where is estimated from the alignment. Other parameters of the phylogenetic Markov model, including substitution rates, character frequencies and branch lengths are estimated using standard maximum likelihood optimization procedures. We apply the GA to empirical alignments and show improved model fit over existing models of codon evolution. Our results suggest that current models are poor approximations of protein evolution and thus gene and organism specific multi-rate models that incorporate amino acid substitution biases are preferred. We further anticipate that the clustering of amino acid substitution rates into classes will be biologically informative, such that genes with similar functions exhibit similar clustering, and hence this clustering will be useful for the evolutionary fingerprinting of genes

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    A novel Alzheimer disease locus located near the gene encoding tau protein

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ε4+ (10 352 cases and 9207 controls) and APOE ε4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ε4 status. Suggestive associations (P<1 × 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ε4+: 1250 cases and 536 controls; APOE ε4-: 718 cases and 1699 controls). Among APOE ε4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≤1.3 × 10-8), frontal cortex (P≤1.3 × 10-9) and temporal cortex (P≤1.2 × 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10-6) and temporal cortex (P=2.6 × 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted
    corecore