99 research outputs found
Hippocampal atrophy on MRI from aging to dementia: a clinical perspective
Scheltens, P. [Promotor]Barkhof, F. [Promotor]Flier, W.M. van der [Copromotor
Spectroscopic detection of brain propylene glycol in neonates: Effects of different pharmaceutical formulations of phenobarbital
Background
The first choice for treatment of neonatal convulsions is intravenous phenobarbital, which contains propylene glycol (PG) as a solvent. Although PG is generally considered safe, the dosage can exceed safety thresholds in neonates. High PG levels can cause lactic acidosis.
Purpose/Hypothesis
To investigate a relationship between brain PG concentration and medication administered to neonates, and to study if a correlation between spectroscopically detected PG and lactate was present.
Study Type
Retrospective.
Population
Fortyâone neonates who underwent MRI/MRS.
Field Strength/Sequence
Short echo time single voxel MRS at 1.5T.
Assessment
Spectra were quantified. Concentrations of PG were correlated with medication administered, because intravenously administered phenobarbital solutions contained 10, 25, or 50âmg phenobarbital per ml, all containing 350âmg PG per ml. The interval between medication and MRI/MRS was determined.
Statistical Tests
Chiâsquare test, Student's tâtest, MannâWhitney Uâtest and Spearman correlation.
Results
Eighteen neonates had brain PG >1âmM (median 3.4âmM, maximum 9.5âmM). All 18 neonates with high brain PG and 14 neonates with low brain PG (<1âmM) received phenobarbital as the only source of PG. Nine neonates did not receive any phenobarbital/PGâcontaining medication. Neonates with high brain PG more often received 10âmg/ml phenobarbital, resulting in higher PG dose (high vs. low brain PG (median [interquartile range]: 1400 [595] vs. 350 [595] mg/kg, respectively, P < 0.01). In addition, the interval between the last phenobarbital dose and MRI was shorter in the high brain PG group (high vs. low brain PG: 16 [21] vs. 95 [83] hours, respectively, P < 0.001). Within neonates that received phenobarbital, there was no conclusive correlation between spectroscopically detected PG and lactate (Spearman's rhoâ=â0.23, Pâ=â0.10).
Data Conclusion
These MRS findings may increase awareness of potentially toxic PG concentrations in the neonatal brain due to intravenous phenobarbital administration and its dependence on the phenobarbital formulation used.
Level of Evidence:4Technical Efficacy:Stage
De novo SPAST mutations may cause a complex SPG4 phenotype
Item does not contain fulltex
Cysteine Depletion Causes Oxidative Stress and Triggers Outer Membrane Vesicle Release by Neisseria meningitidis Implications for Vaccine Development
Outer membrane vesicles (OMV) contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use attenuated endotoxin, to preserve immunological properties and allow a detergent-free process. The preferred process is based on spontaneously released OMV (sOMV), which are most similar to in vivo vesicles and easier to purify. The release mechanism however is poorly understood resulting in low yield. This study with N. meningitidis demonstrates that an external stimulus, cysteine depletion, can trigger growth arrest and sOMV release in sufficient quantities for vaccine production (61500 human doses per liter cultivation). Transcriptome analysis suggests that cysteine depletion impairs iron-sulfur protein assembly and causes oxidative stress. Involvement of oxidative stress is confirmed by showing that addition of reactive oxygen species during cysteine-rich growth also triggers vesiculation. The sOMV in this study are similar to vesicles from natural infection, therefore cysteinedependent vesiculation is likely to be relevant for the in vivo pathogenesis of N. meningitidis
Improved Production Process for Native Outer Membrane Vesicle Vaccine against Neisseria meningitidis
An improved detergent-free process has been developed to produce vaccine based on native outer membrane vesicles (NOMV) against Neisseria meningitidis serogroup B. Performance was evaluated with the NonaMen vaccine concept, which provides broad coverage based on nine distinct PorA antigens. Scalable aseptic equipment was implemented, replacing undesirable steps like ultracentrifugation, inactivation with phenol, and the use of preservatives. The resulting process is more consistent and gives a higher yield than published reference processes, enabling NOMV production at commercial scale. Product quality met preliminary specifications for 9 consecutive batches, and an ongoing study confirmed real-time stability up to 12 months after production. As the NOMV had low endotoxic activity and induced high bactericidal titres in mice, they are expected to be safe and effective in humans. The production process is not limited to NonaMen and may be applicable for other N. meningitidis serogroups and other gram-negative pathogens. The current results therefore facilitate the late-stage development and clinical evaluation of NOMV vaccines
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Alignment of the CMS silicon tracker during commissioning with cosmic rays
This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3â4 microns RMS in the barrel and 3â14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS
(Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia);
Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT,
SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
Commissioning and performance of the CMS pixel tracker with cosmic ray muons
This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia);
Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT,
SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
- âŚ