320 research outputs found
Atmospheric K-feldspar as a potential climate modulating agent through geologic time
Clouds and aerosols have a large, yet highly uncertain, effect on changes in Earth’s climate. A factor of particular note is the role played by ice-nucleating particles, which remains poorly understood. The mineral K-feldspar (Kfs) has recently been shown by a number of independent studies to nucleate ice in mixed-phase cloud conditions far more efficiently than other common minerals. Here, global atmospheric Kfs flux through geologic time is estimated; constrained by records of secular continental crust and biosphere evolution, plate tectonics, volcanism, glaciation, and attendant trends in land surface stability. The analysis reveals that Kfs flux today is at neither extreme of the range estimated across geological time. The present-day Kfs flux, however, is likely to be among the most spatially and temporally variable due to land surface change. The concept of an ice-nucleation efficiency factor that can be calculated from rocks, and also eolian sediments and soils, is proposed. This allows the impact of paleo-atmospheric dust to be estimated through the rock record alongside meteorological and atmospheric composition considerations. With the reasonable assumption that the ice-nucleating properties of Kfs are themselves independent of the background climate state, a better understanding of Kfs flux across a range of spatial and temporal scales will advance understanding of climate processes and interactions
Aerobiology over Antarctica – a new initiative for atmospheric ecology
The role of aerial dispersal in shaping patterns of biodiversity remains poorly understood, mainly due to a lack of coordinated efforts in gathering data at appropriate temporal and spatial scales. It has been long known that the rate of dispersal to an ecosystem can significantly influence ecosystem dynamics, and that aerial transport has been identified as an important source of biological input to remote locations. With the considerable effort devoted in recent decades to understanding atmospheric circulation in the south-polar region, a unique opportunity has emerged to investigate the atmospheric ecology of Antarctica, from regional to continental scales. This concept note identifies key questions in Antarctic microbial biogeography and the need for standardized sampling and analysis protocols to address such questions. A consortium of polar aerobiologists is established to bring together researchers with a common interest in the airborne dispersion of microbes and other propagules in the Antarctic, with opportunities for comparative studies in the Arctic
Evolutionary and socio-cultural influences on feelings and attitudes towards nature: a cross-cultural study
Mounting environmental issues have prompted reconsideration of the human–nature relationship. Accordingly, attitudes to nature, as an important dimension of human–nature interactions, have become a research focus. How feelings and attitudes towards nature are influenced by evolutionary and social-cultural constructions, and whether there is variation between different cultural groups, demands more attention. Using a survey of visitors to two very different National Parks, the New Forest National Park, England and Jiuzhaigou Scenic Area, China, this paper shows that of nationality and living environment, differences between the two nationalities were significant in respect of both attitudes and feelings. Specifically, it demonstrates that the biophilia thesis, which purports that people have an innate and a genetically inherited need for affiliation with nature, is influenced by their socio-cultural environment, in particular their national culture, but also by their current living place. The study contributes to our understanding of sustainable tourism in natural areas
Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert
The Namib Dessert is considered the oldest desert in the world and hyperarid for the last 5 million years. However, the environmental buffering provided by quartz and other translucent rocks supports extensive hypolithic microbial communities. In this study, open soil and hypolithic microbial communities have been investigated along an East–West transect characterized by an inverse fog-rainfall gradient. Multivariate analysis showed that structurally different microbial communities occur in soil and in hypolithic zones. Using variation partitioning, we found that hypolithic communities exhibited a fog-related distribution as indicated by the significant East– West clustering. Sodium content was also an important environmental factor affecting the composition of both soil and hypolithic microbial communities. Finally, although null models for patterns in microbial communities were not supported by experimental data, the amount of unexplained variation (68–97 %) suggests that stochastic processes also play a role in the assembly of such communities in the Namib Desert.Web of Scienc
Environmental harm and environmental victims: scoping out a ‘green victimology'
In this paper I intend to discuss the adaptability of victimological study to the question of ‘environmental victimisation’. The impact on those affected by environment crime, or other environmentally damaging activities, is one that has received scarce attention in the mainstream victimological literature (see Williams, 1996). The role or position of such victims in criminal justice and/or other processes has likewise rarely been topic of academic debate. I have recently expanded upon various aspects of this subject and surrounding issues at greater length (Hall, 2013) but for the purposes of this article I wish to expand specifically on what a so-called ‘green victimology’ might look like, together with some of the particular questions and challenges it will face
The changing form of Antarctic biodiversity
Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewher
A communal catalogue reveals Earth’s multiscale microbial diversity
Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity
A communal catalogue reveals Earth's multiscale microbial diversity
Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
Hypolithic Microbial Community of Quartz Pavement in the High-Altitude Tundra of Central Tibet
The hypolithic microbial community associated with quartz pavement at a high-altitude tundra location in central Tibet is described. A small-scale ecological survey indicated that 36% of quartz rocks were colonized. Community profiling using terminal restriction fragment length polymorphism revealed no significant difference in community structure among a number of colonized rocks. Real-time quantitative PCR and phylogenetic analysis of environmental phylotypes obtained from clone libraries were used to elucidate community structure across all domains. The hypolithon was dominated by cyanobacterial phylotypes (73%) with relatively low frequencies of other bacterial phylotypes, largely represented by the chloroflexi, actinobacteria, and bacteriodetes. Unidentified crenarchaeal phylotypes accounted for 4% of recoverable phylotypes, while algae, fungi, and mosses were indicated by a small fraction of recoverable phylotypes
Subsurface Microbial Habitats in an Extreme Desert Mars-Analog Environment
Sediments in the hyper-arid core of the Atacama Desert are a terrestrial analog to Mars regolith. Understanding the distribution and drivers of microbial life in the sediment may give critical clues on how to search for biosignatures on Mars. Here, we identify the spatial distribution of highly specialized bacterial communities in previously unexplored depth horizons of subsurface sediments to a depth of 800 mm. We deployed an autonomous rover in a mission-relevant Martian drilling scenario with manual sample validation. Subsurface communities were delineated by depth related to sediment moisture. Geochemical analysis indicated soluble salts and minerology that influenced water bio-availability, particularly in deeper sediments. Colonization was also patchy and uncolonized sediment was associated with indicators of extreme osmotic challenge. The study identifies linkage between biocomplexity, moisture and geochemistry in Mars-like sediments at the limit of habitability and demonstrates feasibility of the rover-mounted drill for future Mars sample recovery
- …
