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Abstract 

The Namib Dessert is considered the oldest desert in the world and hyperarid for the last 

5 million years. However, the environmental buffering provided by quartz and other 

translucent rocks supports extensive hypolithic microbial communities. In this study, open 

soil and hypolithic microbial communities have been investigated along an East–West 

transect characterized by an inverse fog-rainfall gradient. Multivariate analysis showed that 

structurally different microbial communities occur in soil and in hypolithic zones. Using 

variation partitioning, we found that hypolithic communities exhibited a fog-related 

distribution as indicated by the significant East– West clustering. Sodium content was 

also an important environmental factor affecting the composition of both soil and 

hypolithic microbial communities. Finally, although null models for patterns in microbial 

communities were not supported by experimental data, the amount of unexplained variation 

(68–97 %) suggests that stochastic processes also play a role in the assembly of such 

communities in the Namib Desert. 

 

Introduction 

With an estimated age of 80 million years, the Namib Desert, located in the southwest of 

the African continent, is believed to be the oldest dryland region in the world (Prestel et al. 

2008). Although hyper-aridity, high winds, extreme temperatures and low nutrient 

availability all impose constraints on microbial life, microbial communities proliferate in 

these environments in ‘‘refuge’’ niches (Pointing and Belnap 2012; Chan et al. 2012). One 

of the most studied of these habitats is the lithic environment, where microbial 

communities have colonized the underside (hypolithic) or interior (endolithic) of 

translucent rocks. 

 

Such communities are very widespread, but dominate standing biomass in the driest 

(Warren-Rhodes et al. 2006; 2007; Walker and Pace 2007; Azua-Bustos et al. 2011) and 

coldest (de la Torre et al. 2003; Pointing et al. 2009; Cary et al. 2010) deserts on Earth. 

Translucent rocks create microclimatic conditions where hypolithic microorganisms benefit 

from greater physical stability, desiccation buffering, increased water availability and 

protection from UV fluxes (Pointing et al. 2009; Cowan et al. 2010; Wong et al. 2010). 
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Hypolithic communities in extreme desert environments may be the dominant sites of 

primary productivity (Tracy et al. 2010), contributing significantly to N input and carbon in the 

form of biomass (Cockell and Stokes 2004; Cowan et al. 2011). Hypoliths have been proposed 

as viable model systems for understanding the mechanisms underlying the assembly of 

bacterial communities (Caruso et al. 2011), a major goal in microbial ecology. 

 

All studies on hypoliths have indicated that these communities are most commonly 

dominated by photosynthetic cyanobacteria, with a taxonomically diverse heterotrophic 

component dominated by the phyla Acidobacteria, Actino-bacteria, Bacteroidetes and  

Proteobacteria  (Schlesinger et al. 2003; Warren-Rhodes et al. 2006, 2007; Pointing et al. 

2007, 2009; Wood et al. 2008; Chan et al. 2012). However, the processes shaping the 

assembly of such communities are still poorly understood. Historically, community ecologists 

have focused on environmental conditions and interspecific interactions (deterministic 

factors) to explain how species diversity and composition vary along environmental and/or 

spatiotemporal gradients (Chase 2007). More recently, ‘‘neutral’’ theory (Hubbell 2001) has 

suggested that many natural patterns can be recreated only by considering stochastic 

assembly processes like birth, death, colonization, extinction and speciation. It is now 

widely accepted that community assembly can be either regulated by (1) purely 

deterministic processes, where habitat heterogeneity creates different niches in which 

different groups of species are favored; (2) purely stochastic processes; or (3) the 

interaction between stochastic and deterministic processes (Chase 2010; Ofiteru et al. 

2010). 

 

Understanding the mechanisms that regulate microbial community assembly is of special 

interest, because such mechanisms sustain biodiversity and ecosystem functioning. This is 

of particular relevance in arid systems, which are highly susceptible to disturbance, and 

may be particularly threatened by accelerated rates of climate change (Seager et al. 2007). 

Recently, it has been demonstrated that on a global scale stochastic and deterministic 

processes interact in structuring desert microbial communities (Caruso et al. 2011). In this 

instance, whilst heterotrophic assemblages could be explained partially by climatic and 

environmental variables, phototrophic bacterial assemblages exhibited strong signals 

related  to  demographic stochasticity. The latter has been attributed to the lack of gene 

flow among cyanobacteria in hypolithic systems (Bahl et al. 2011). Under harsh 

environmental conditions (such as those present in desert ecosystems), species sorting is 

thought to result in more deterministic communities (Chase 2007, 2010). 

 

Water is a scarce resource in the Namib Desert. The annual mean rainfall at Gobabeb, 

in the central Namib Desert, recorded from 1962 to 2010, was 25 mm (Eckardt et al. 

2012) occurring as sporadic events. Precipitation, therefore, is not a reliable source of 

water for sustaining life in the central arid region of this desert. Relative humidity and 

dew are important sources (Henschel and Seely 2008), but fog events, which are common 

in a zone from the coast to approx. 60 km inland (Eckardt et al. 2012), are thought to be 

the dominant source of bioavailable water in the region (Bü del et al. 2009). Water 

availability is considered to be one of the most important factors affecting hypolithic 
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microbial populations in many terrestrial environments (Warren-Rhodes et al. 2006; 

Pointing et al. 2007; Azua-Bustos et al. 2011; Cary et al. 2010; Pointing and Belnap 

2012). Both available liquid water, derived from rainfall (Warren-Rhodes et al. 2006; 

Pointing et al. 2007) and fog (Azua-Bustos et al. 2011), have been shown to be key 

determinants of hypolithic communities in hyper-arid regions. However, to our knowledge, 

the influence of water regime (in terms of fog and rainfall sources) in shaping the structure 

of desert microbial communities on a local scale has never been investigated. 

 

Here, we assessed the relative importance of abiotic factors, such as water regime and soil 

chemical properties in explaining microbial community composition on a local scale. 

Specifically, we hypothesized that water regime (i.e. fog- vs. rainfall-dominated) is a driver of 

local-scale variation in microbial community composition. We have examined the structure 

of general (open soil) and  specific (hypolithic) microbial communities through an East–

West transect across the Namib Desert. This transect has a well-established water availability 

gradient determined by fog and rainfall (Eckardt et al. 2012). We compared the meta-

community structure of hypolithons to those in adjacent open soil at each site, by means of 

variation partitioning and null model analysis, in an attempt to unravel the processes that 

govern their assembly. 

 

Materials and methods 

Sample collection and physicochemical analysis Samples were collected in April 2010 at ten 

sites along a V-shaped (northwest-southwest-northeast) transect that extended 100 km 

inland from Walvis Bay (Fig. 1). At each GPS-logged  site,  5  independent  hypolithic  

community samples were pooled into sterile Whirl-Pack sample bags (Nasco, WI, USA). All 

rocks were similar in composition (quartz), size (12–15 cm) and thickness (5–7 cm) to 

minimize the influence of these factors in shaping the structure of microbial communities. 

Simultaneously, multiple open soil samples (0–5 cm in depth) were pooled, homogenized, 

and directly transferred into sterile 50 ml tubes. Samples were stored at 4 °C after 

sampling and during transport to the laboratory, and then stored at -80 °C until 

further analysis. 

 

Total carbon, nitrogen, pH, water content, potassium, calcium, sodium and magnesium 

were measured for each soil sample at BemLab (SANAS Accredited Testing Laboratory, 

Somerset West, South Africa), according to standard quality control procedures (SSSA 

1996). 

 

For clarification (see Fig. 1), western samples (G3, G9, G12, G15 and G18) are referred to 

collectively as fog-dominated, while eastern samples (G20, G22, G2, G27 and G29) are 

referred to as rainfall-dominated, following the climatic zonation of the Namib Desert 

(Eckardt et al. 2012). 

 

DNA extraction, PCR amplification and T-RFLP analysis 

Metagenomic DNA was extracted from triplicate sub-samples using the PowerSoil DNA 

Isolation Kit (MoBio, West Carlsbad, CA, USA) following the manufacturer’s instructions. 
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PCR amplification was performed with primer sets E9F (Hansen et al. 1998): 50-

GAGTTTGATCCTG GCTCAG-30 and U1510R (Reysenbach and Pace 1995): 50-

GGTTACCTTGTTACGACTT-30, for bacteria; and 27F1 (Jungblut et al. 2005): 50-

AGAGTTTGATCCTGGCT-CAG-30 and 809R (Jungblut et al. 2005): 50-GCTTCGG-CACG 

GCTCGGGTCGATA-30, for cyanobacteria. In both primer sets, the forward primer was 

labeled with the fluorescent dye 6-FAM (6-carboxyfluorescein) at the 50 end. PCRs were 

carried out in triplicate 50 ll volumes to minimize reaction bias. Each PCR 

contained 19 PCR buffer, 200 lM of each dNTP, 0.5 lM of each primer, 0.2 U of 

DreamTaq polymerase  (Fermentas,  USA)  and 10 ng of template. Thermal cycling 

conditions for bacterial PCR were a 4-min denaturation step at 94 °C; 30 cycles at 94 °C for 

30 s, 52 °C for 30 s and 72 °C for 105 s; and a final extension step at 72 °C for 10 min. For 

cyanobacteria-specific amplifications, PCR conditions were a denaturation step at 94 °C 

for a 4 min; 30 cycles at 92 °C for 20 s, 50 °C for 30 s and 72 °C for 1 min; and a final 

extension step at 72 °C for 7 min. After amplification, the triplicate PCRs were pooled and 

purified with an Illustra GFXTM PCR DNA and Gel Band Purification kit (GE Healthcare, 

UK), digested separately with HaeIII and MspI (Fermentas, USA) and purified again before 

the electrophoretic separation using an ABI 3130XL DNA sequencer (Applied Biosystems, 

USA). Terminal restriction fragments (T-RFs) generated by Peak Scanner software v1.0 

(Applied Biosystems) were filtered and binned by the method developed by Abdo et al. 

(2006). 

 

Statistical analysis 

Analysis of variance followed by two sample t tests was used to determine if there were 

significant differences in operational   taxonomic   unit   (OTU)   numbers   between sample 

group (i.e. hypolith vs. soil and fog-dominated vs. rainfall-dominated) at a 95 % confidence 

interval. 
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Sample-dissimilarity matrices were generated using the Bray–Curtis coefficient on 

Hellinger-transformed data (Legendre and Gallagher 2001). Community structure was 

analyzed using non-metric multidimensional scaling (nMDS). Since nMDS ordination 

uses an iterative algorithm, an important component of a nMDS plot is a measure of the 

goodness of fit of the final plot (i.e. stress value). A stress value greater than 0.2 indicates 

that the plot is close to random, stress less than 0.2 indicates a useful two-dimensional 

picture, and less than 0.1 corresponds to an ideal ordination (Clarke 1993). 

 

Between-group variation was tested by pairwise analysis of similarity (ANOSIM). Within-

group variation (scatter in the nMDS ordination plots) was compared by dispersion 

analysis; i.e. by evaluating the differences between sample type and the group centroid 

(Anderson et al. 2006). Physicochemical data, except pH, were log10-transformed. 

Climate regime (fog-dominated vs. rainfall-dominated) was included in the models as a 

dummy (qualitative) variable. Spatial variables were derived from longitude–latitude 

coordinates using the principal coordinates of neighbor matrices (PCNM) procedure 

(Griffith and Peres-Neto 2006). Separated forward selection of the environmental and 

spatial variables was done to find the set of parameters that could best explain the 

variation in community composition (Ramette 2007). We also used redundancy analysis 

(RDA) variation partitioning (Peres-Neto et al. 2006) to determine how much of the 

variation in microbial community composition could be attributed to environment, E, and 

space, S. The different components are total explained variation [E ? S], environmental 

variation [E], spatial variation [S], environmental variation without a spatial  component  

[E|S],  and  spatial  variation  without the environmental component [S|E]. Fraction [U] 

is the amount of variation that remains unexplained (1 - [E ? S]). Significance testing was 

done with 999 Monte Carlo permutations, and all R2 values were calculated and adjusted 
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as described by Peres-Neto et al. (2006). All statistical analyses were performed using 

the vegan package for R 2.14.1 (http://www.r-project.org/). 

 

Non-random co-occurrence patterns were tested with the checkerboard score (C score) 

under a null model preserving site and species frequencies (Stone and Roberts 1990) and 

using EcoSim software (Gotelli and Entsminger 2009) with the default settings. We 

calculated a standardized effect size (SES) for each matrix that measures the statistical 

deviation from random co-occurrence. It is calculated as the number of standard 

deviations that the observed score is above or below the mean co-occurrence index for the  

simulated  communities  [SES = (Iobs - Isim)/Ssim]. Where Iobs is the C score of the 

observed incidence matrix, Isim is the mean of 5,000 C scores generated from the simulated 

null model matrices, and Ssim is the standard deviation of 5,000 simulated communities 

(Horner-Devine et al. 2007). If the resulting C score is significantly larger than the C score 

produced by the null distribution, then species co-occur less often than expected by 

chance (i.e. there is segregation of taxa). If the C score is significantly less than the C score 

for the null distribution, then more species co-occur than expected by  chance (i.e.  there is 

more aggregation among taxa). 

 

Results and discussion 

T-RFLP and statistical analyses were carried out with HaeIII- and MspI-digested samples, 

independently. As similar results were obtained with both enzymes, only the results from 

HaeIII digestions are presented here. It must be noted that because hypolithic communities 

are supported on essentially inert substrates (Pointing et al. 2009), we assume identical 

chemical parameters in hypoliths and adjacent soil samples for explaining variation in 

hypolithic community composition (Table 1). 

 

 
 

Community patterns 

A total of 245 bacterial T-RFLP-derived OTUs were found among all samples (Figs. 2, 3), of 

which 75 were unique to the hypoliths and 55 unique to the soils. Cyanobacterial OTUs 

(78) were detected consistently in all hypolithic samples but in only three of the soil 

samples. Repeated DNA extractions and T-RFLP  PCRs  indicated that this result was 
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reproducible. As a result, only cyanobacteria from hypoliths were  considered  for  further  

analysis (Figs. 2, 3). Rainfall-dominated hypolithic communities showed relatively higher 

numbers of unique OTU (70 for bacteria and 30 for cyanobacteria) than fog-dominated 

communities (35 for bacteria and 18 for cyanobacteria) (Kruskal–Wallis test, P [ 0.05). In 

contrast, soil bacterial communities exhibited similar OTU numbers irrespective of the 

climate (41 for fog- and 35 for rainfall-dominated samples, respectively). T-RFLP analysis 

of soil and hypolithic 16S rRNA gene amplicons showed significant differences in 

community structure (Fig. 4). When bacterial community patterns were visualized by 

nMDS, hypoliths exhibited clearly distinct bacterial signatures compared with the 

surrounding soil (Fig. 4a). Moreover, soil bacterial fingerprints differed more from each 

other (i.e. showed higher dispersion) than the hypolithic bacteria, though no statistically 

significant differences were found (Kruskal–Wallis test, P [ 0.05). This result was greatly 

influenced by hypolith sample G2 (Fig. 4a, top circle) that presented a very different 

bacterial community and also the lowest cyanobacterial OTU numbers (Fig. 3). However, by 

excluding this outlier, a significant difference in sample dispersion  was  observed  (post  

hoc  Wilcoxon–Mann–Whitney test, P \ 0.05). These observations support two major 

conclusions. First, it is suggested that habitat filtering caused by the unique but more 

homogenous sub-lithic environmental conditions increases bacterial species similarity 

within hypolithic communities. The most likely explanation for this is that the overlying 

rock reduces evaporation and increases water availability (Cockell and Stokes 2004), thus 

creating an environment suitable for species with higher sensitivity to desiccation (Wood 

et al. 2008). High relative humidity (RH) values are consistently recorded in hypolithic 

zones (Cowan et al. 2010; Khan et al. 2011; unpublished results). Since hypolithic 

communities were physically dominated by cyanobacterial biomass, these results agree 

with the concept that autotrophs have lower b-diversity than heterotrophs (Soininen et al. 

2007). Second, the differences in microbial community composition between the hypolithic 

and open soil habitats suggest that hypolithic communities represent reservoirs of 

microbial diversity for both general bacteria and cyanobacteria in the Namib Desert. 

 

Separation by habitat type (hypoliths vs. open soil; Fig. 4a) was  also  confirmed  by  statistically  

significant ANOSIM results  (R = 0.69,  P = 0.001) while no differences  were observed  

between  sample  sites  (fog-dominated/rainfall-dominated)  (ANOSIM  Global  R = 

0.133,  P [ 0.05). 

 

http://repository.uwc.ac.za



8 
 

 
 

A clear separation in microbial community composition between hypoliths and the 

surrounding soil has been observed previously (Warren-Rhodes et al. 2006; Pointing et al. 

2007, 2009; Tracy et al. 2010; Khan et al. 2011), supporting the concept that the 

development of hypolithic communities is, at least in part, independent of the bacterial 

composition in the surrounding soil. When hypolithic and open soil diversity patterns were 

considered separately, the dominant water regime (fog vs. rainfall) did not influence soil  

bacterial  community  patterns  (Fig. 4b)  (ANOSIM, Global R = 0.02, P [ 0.05). However, 

hypolithic bacterial community structures differed significantly between climate regimes  

(Fig. 4c)  (ANOSIM,  Global  R = 0.244, P = 0.02). An even more pronounced influence of 

climate was observed in the nMDS patterns derived from cyano-bacterial T-RFLPs (Fig. 

4d) (ANOSIM, Global R = 0.728, P = 0.006). 

 

Effects of the environment and space 

As both habitat type (hypoliths vs. open soil) and climate regime (fog-dominated vs. 

rainfall-dominated) impacted microbial community structure, we performed canonical 

RDA to assess the effect of environmental and geographic variables (as PCNM eigenvalues). 

Water regime (for both the general bacteria and cyanobacterial hypolithic communities) 

and sodium (for hypolithic cyanobacteria and soil bacteria) were the only two independent 

environmental variables (Mantel r = 0.021, P = 0.343) found to play a role in the 

variation observed. Furthermore, as the content of Na in the soil increased, bacterial 

richness decreased (Pearsons’ r = -0.75, P = 0.012). 
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In desert ecosystems, even modest levels of soluble salts are thought to be an important 

determinant of microbial diversity and richness, because water activity, which determines 

biological water availability, is reduced in the presence of soluble salts (Cowan 2009). 
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Moreover, moisture together with temperature and photosynthetically active radiation 

(PAR) are essential parameters that limit the growth and photosynthetic activity of 

hypolithic cyanobacteria (Schlesinger et al. 2003; Warren-Rhodes et al. 2006, 2007; Tracy 

et al. 2010). Both available liquid water, derived from rainfall (Warren-Rhodes et al. 2006; 

Pointing et al. 2007) or fog (Azua-Bustos et al. 2011), and salinity (Thomas 2005; Pointing 

et al. 2009) have been found to be key determinants of hypolithic communities. Thus, it 

follows that water regime and sodium content may be essential factors in regulating the 

extent of microbial community composition in the Namib Desert. 

 

After canonical RDA variation partitioning, the contribution of environment (E) and space 

(S) to the explained variation in microbial community composition was as follows. For 

open soil bacterial communities, the environment fraction (E = [E|S ? E\S]) contributed 

13 % (P = 0.025), of  which  5 %  was   not   spatially   structured   ([E|S]) (P [ 0.05). For 

hypolithic bacteria, no significant contribution was found for any computed factor. For 

hypolithic cyanobacteria, the environment alone ([E|S]) contributed 14 % (P = 0.008) and 

the confounded effect ([E\S]) 18 % (not testable), giving a total explained variation of 32 % 

(P = 0.01). However, caution is required when interpreting these results since the 

proportion of variation attributed to the environment depends not only on the strength of 

environmental control, but also on the specific spatial configuration of the environmental 

variables and the degree of dispersal limitations (Smith and Lundholm 2010). More- 

over, it is important to note that after variation partitioning, 87, 97 and 68 % of the 

variation (for soil bacteria, hypolithic bacteria and hypolithic cyanobacteria, respectively) 

remained unexplained. This level of unexplained variation is not uncommon in ecological 

studies, since variations in species abundance data are often very high (Cottenie 2005; 

Dumbrell et al. 2010), and different groups of organisms may respond differently to the 

same environmental factors (Drakare and Liess 2010). The high proportion of 

unaccounted variation may be attributed to interspecies interaction (e.g. cooperation or 

competition), environmental factors that were not recorded (e.g. temperature, RH or 

dew), stochastic processes (e.g. variation in species population growth rates) or any 

combination of these. 

 

Null model analysis 

Stochasticity has been predicted to be the main driver of population dynamics under 

neutral theory (Hubbell 2001). When stochastic processes play a major role, random 

patterns in species co-occurrence dominate microbial community structure (Bell 2005). By 

contrast, if environmental factors  and  species  interaction  are  the  principal  acting forces, 

shifts in key environmental variables such as water availability, salinity and pH may be 

responsible for the spatial structures found in species assemblages (Fierer and Jackson 

2006; Lozupone and Knight 2007; Pointing et al. 2007). 

 

To test whether stochasticity may be important in shaping the structure of microbial 

communities, we performed null model analysis (Gotelli 2000). We found that soil and 

hypolithic microbial communities were significantly segregated (i.e., species co-occurred 

less frequently than randomly predicted) (Fig. 5). Segregation patterns have been originally 
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attributed to species interactions (especially competition) or environmental filtering, but 

the same patterns can also be generated by limited dispersal and historical or 

evolutionary processes that prevent species from co-occurring in the absence of species 

interactions (Horner-Devine et al. 2007; Ulrich and Gotelli 2007). Our result is in agreement 

with a meta-analysis where most of the microbial assemblages showed segregation and very 

few displayed evidences for aggregation (Horner-Devine et al. 2007) and, together with 

variation partitioning analysis, suggests that deterministic processes are important for 

community assembly in the Namib Desert. In addition, although neutral processes may 

result in nonrandom co-occurrence patterns (Bell 2005), deterministic processes have been 

shown to predominate in harsh environment and lower productivity systems, whereas 

stochastic processes predominate in more benign habitats and higher productivity 

systems (Chase 2007, 2010). There is an increasing perception of the importance of 

cooperative and competitive interactions between and within bacterial communities 

(Freilich et al. 2011). Hypolithic cyanobacteria are well-known producers of 

exopolysaccharide (Pointing et al. 2007), a major component of the extracellular matrix that 

protects biofilms from harsh environmental factors and may aid in water uptake and 

retention (Hall-Stoodley  et al. 2004). 

 

 
 

While EPS secretion may sometimes reflect cooperation among biofilm-dwelling bacteria, 

evidence suggests that EPS can also mediate competition in biofilms (reviewed in Nadell et 

al. 2009). Therefore, we agree with Caruso et al. (2011) and believe that inter-specific 

interactions may contribute to explain differences in the assembly of desert microbial 

communities. 
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Using null models, in contradiction to Caruso et al. (2011), we did not find stochastic 

signatures to be important in structuring microbial communities; although they used 

samples from geographically distant deserts, whereas in our study we used a single ‘‘local’’ 

community. However, given the amount of variability that remains unexplained, it is not 

unlikely that stochastic processes also play a role in the assembly of bacteria and 

cyanobacterial communities. Taken together, our results and those from Caruso et al. 

(2011) are consistent with the concept that drivers shaping the structure of microbial 

communities depend on the spatial scale (Prosser et al. 2007; Martiny et al. 2011). 

 

A potentially important limitation of our methodology is that DNA fragments with different 

sequences give rise to similar T-RF sizes. Moreover, in contrast to results obtained 

through application of clone libraries or next-generation sequencing low abundant taxa are 

not detected with our method. However, the main aim of our research was not to obtain a 

full coverage of the diversity in the samples, but rather to monitor variations in the 

structure of microbial communities that arise from targeting the most abundant taxa in 

the context of a well-defined water availability gradient determined by fog and rainfall. If 

we assume the likely hypothesis that states that the dominant microorganisms in a sample 

are those that play the most important functional role under normal conditions, finger- 

printing methods can reveal ecological patterns that help define microbial community 

structures. Indeed, in a recent study, both 454 pyrosequencing and T-RFLP analysis 

generated comparable patterns of community composition (Besemer et al. 2012). 

 

In summary, our findings suggest that, on a local scale, deterministic (environmental 

constraints and interspecies interactions) and, to a lesser extent, stochastic processes are 

determinants of microbial community’ distribution in the Namib Desert. Such processes 

are critical in a context of global change, and may result in a rapid extinction of these 

communities if habitat parameters shift at a rapid pace (Thuiller et al. 2005). 
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