18 research outputs found

    Toll-like receptor 4 signaling activates ERG function in prostate cancer and provides a therapeutic target

    Get PDF
    The TMPRSS2-ERG gene fusion and subsequent overexpression of the ERG transcription factor occurs in ∼50% of prostate tumors, making it the most common abnormality of the prostate cancer genome. While ERG has been shown to drive tumor progression and cancer-related phenotypes, as a transcription factor it is difficult to target therapeutically. Using a genetic screen, we identified the toll-like receptor 4 (TLR4) signaling pathway as important for ERG function in prostate cells. Our data confirm previous reports that ERG can transcriptionally activate TLR4 gene expression; however, using a constitutively active ERG mutant, we demonstrate that the critical function of TLR4 signaling is upstream, promoting ERG phosphorylation at serine 96 and ERG transcriptional activation. The TLR4 inhibitor, TAK-242, attenuated ERG-mediated migration, clonogenic survival, target gene activation and tumor growth. Together these data indicate a mechanistic basis for inhibition of TLR4 signaling as a treatment for ERG-positive prostate cancer

    Acknowledging the Relevance of Elephant Sensory Perception to Human–Elephant Conflict Mitigation

    Full text link
    Elephants are well known for their socio-cognitive abilities and capacity for multi-modal sensory perception and communication. Their highly developed olfactory and acoustic senses provide them with a unique non-visual perspective of their physical and social worlds. The use of these complex sensory signals is important not only for communication between conspecifics, but also for decisions about foraging and navigation. These decisions have grown increasingly risky given the exponential increase in unpredictable anthropogenic change in elephants’ natural habitats. Risk taking often develops from the overlap of human and elephant habitat in Asian and African range countries, where elephants forage for food in human habitat and crop fields, leading to conflict over high-quality resources. To mitigate this conflict, a better understanding of the elephants’ sensory world and its impact on their decision-making process should be considered seriously in the development of long-term strategies for promoting coexistence between humans and elephants. In this review, we explore the elephants’ sensory systems for audition and olfaction, their multi-modal capacities for communication, and the anthropogenic changes that are affecting their behavior, as well as the need for greater consideration of elephant behavior in elephant conservation efforts

    Elephants as an animal model for self-domestication

    Get PDF
    Humans are unique in their sophisticated culture and societal structures, their complex languages, and their extensive tool use. According to the human self-domestication hypothesis, this unique set of traits may be the result of an evolutionary process of self-induced domestication, in which humans evolved to be less aggressive and more cooperative. However, the only other species that has been argued to be self-domesticated besides humans so far is bonobos, resulting in a narrow scope for investigating this theory limited to the primate order. Here, we propose an animal model for studying self-domestication: the elephant. First, we support our hypothesis with an extensive cross-species comparison, which suggests that elephants indeed exhibit many of the features associated with self-domestication (e.g., reduced aggression, increased prosociality, extended juvenile period, increased playfulness, socially regulated cortisol levels, and complex vocal behavior). Next, we present genetic evidence to reinforce our proposal, showing that genes positively selected in elephants are enriched in pathways associated with domestication traits and include several candidate genes previously associated with domestication. We also discuss several explanations for what may have triggered a self-domestication process in the elephant lineage. Our findings support the idea that elephants, like humans and bonobos, may be self-domesticated. Since the most recent common ancestor of humans and elephants is likely the most recent common ancestor of all placental mammals, our findings have important implications for convergent evolution beyond the primate taxa, and constitute an important advance toward understanding how and why self-domestication shaped humans’ unique cultural niche

    Visual cues given by humans are not sufficient for Asian elephants (Elephas maximus) to find hidden food.

    Get PDF
    Recent research suggests that domesticated species--due to artificial selection by humans for specific, preferred behavioral traits--are better than wild animals at responding to visual cues given by humans about the location of hidden food. \Although this seems to be supported by studies on a range of domesticated (including dogs, goats and horses) and wild (including wolves and chimpanzees) animals, there is also evidence that exposure to humans positively influences the ability of both wild and domesticated animals to follow these same cues. Here, we test the performance of Asian elephants (Elephas maximus) on an object choice task that provides them with visual-only cues given by humans about the location of hidden food. Captive elephants are interesting candidates for investigating how both domestication and human exposure may impact cue-following as they represent a non-domesticated species with almost constant human interaction. As a group, the elephants (n = 7) in our study were unable to follow pointing, body orientation or a combination of both as honest signals of food location. They were, however, able to follow vocal commands with which they were already familiar in a novel context, suggesting the elephants are able to follow cues if they are sufficiently salient. Although the elephants' inability to follow the visual cues provides partial support for the domestication hypothesis, an alternative explanation is that elephants may rely more heavily on other sensory modalities, specifically olfaction and audition. Further research will be needed to rule out this alternative explanation

    Training future generations to deliver evidence-based conservation and ecosystem management

    Get PDF
    1. To be effective, the next generation of conservation practitioners and managers need to be critical thinkers with a deep understanding of how to make evidence-based decisions and of the value of evidence synthesis. 2. If, as educators, we do not make these priorities a core part of what we teach, we are failing to prepare our students to make an effective contribution to conservation practice. 3. To help overcome this problem we have created open access online teaching materials in multiple languages that are stored in Applied Ecology Resources. So far, 117 educators from 23 countries have acknowledged the importance of this and are already teaching or about to teach skills in appraising or using evidence in conservation decision-making. This includes 145 undergraduate, postgraduate or professional development courses. 4. We call for wider teaching of the tools and skills that facilitate evidence-based conservation and also suggest that providing online teaching materials in multiple languages could be beneficial for improving global understanding of other subject areas.Peer reviewe

    The evolution of self-control

    Get PDF
    This work was supported by the National Evolutionary Synthesis Center (NESCent) through support of a working group led by C.L.N. and B.H. NESCent is supported by the National Science Foundation (NSF) EF-0905606. For training in phylogenetic comparative methods, we thank the AnthroTree Workshop (supported by NSF BCS-0923791). Y.S. thanks the National Natural Science Foundation of China (Project 31170995) and National Basic Research Program (973 Program: 2010CB833904). E.E.B. thanks the Duke Vertical Integration Program and the Duke Undergraduate Research Support Office. J.M.P. was supported by a Newton International Fellowship from the Royal Society and the British Academy. L.R.S. thanks the James S. McDonnell Foundation for Award 220020242. L.J.N.B. and M.L.P. acknowledge the National Institutes of Mental Health (R01-MH096875 and R01-MH089484), a Duke Institute for Brain Sciences Incubator Award (to M.L.P.), and a Duke Center for Interdisciplinary Decision Sciences Fellowship (to L.J.N.B.). E.V. and E.A. thank the Programma Nazionale per la Ricerca–Consiglio Nazionale delle Ricerche (CNR) Aging Program 2012–2014 for financial support, Roma Capitale–Museo Civico di Zoologia and Fondazione Bioparco for hosting the Istituto di Scienze e Tecnologie della Cognizione–CNR Unit of Cognitive Primatology and Primate Centre, and Massimiliano Bianchi and Simone Catarinacci for assistance with capuchin monkeys. K.F. thanks the Japan Society for the Promotion of Science (JSPS) for Grant-in-Aid for Scientific Research 20220004. F. Aureli thanks the Stages in the Evolution and Development of Sign Use project (Contract 012-984 NESTPathfinder) and the Integrating Cooperation Research Across Europe project (Contract 043318), both funded by the European Community’s Sixth Framework Programme (FP6/2002–2006). F. Amici was supported by Humboldt Research Fellowship for Postdoctoral Researchers (Humboldt ID 1138999). L.F.J. and M.M.D. acknowledge NSF Electrical, Communications, and Cyber Systems Grant 1028319 (to L.F.J.) and an NSF Graduate Fellowship (to M.M.D.). C.H. thanks Grant-in-Aid for JSPS Fellows (10J04395). A.T. thanks Research Fellowships of the JSPS for Young Scientists (21264). F.R. and Z.V. acknowledge Austrian Science Fund (FWF) Project P21244-B17, the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement 311870 (to F.R.), Vienna Science and Technology Fund Project CS11-026 (to Z.V.), and many private sponsors, including Royal Canin for financial support and the Game Park Ernstbrunn for hosting the Wolf Science Center. S.M.R. thanks the Natural Sciences and Engineering Research Council (Canada). J.K.Y. thanks the US Department of Agriculture–Wildlife Services–National Wildlife Research Center. J.F.C. thanks the James S. McDonnell Foundation and Alfred P. Sloan Foundation. E.L.M. and B.H. thank the Duke Lemur Center and acknowledge National Institutes of Health Grant 5 R03 HD070649-02 and NSF Grants DGE-1106401, NSF-BCS-27552, and NSF-BCS-25172. This is Publication 1265 of the Duke Lemur Center.Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.PostprintPeer reviewe
    corecore