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Abstract26

Cognition presents evolutionary research with one of its greatest challenges. Cognitive27

evolution has been explained at the proximate level by shifts in absolute and relative28

brain volume and at the ultimate level by differences in social and dietary complexity.29

However, no study has integrated the experimental and phylogenetic approach at the3 0

scale required to rigorously test these explanations. Instead, previous research has largely3 1

relied on various measures of brain size as proxies for cognitive abilities. We3 2

experimentally evaluated these major evolutionary explanations by quantitatively3 3

comparing the cognitive performance of 567 individuals representing 36 species on two3 4

problem-solving tasks measuring self-control. Phylogenetic analysis revealed that3 5

absolute brain volume best predicted performance across species and accounted for3 6

considerably more variance than brain volume controlling for body mass. This result3 7

corroborates recent advances in evolutionary neurobiology and illustrates the cognitive3 8

consequences of cortical reorganization through increases in brain volume. Within3 9

primates, dietary breadth but not social group size was a strong predictor of species4 0

differences in self-control. Our results implicate robust evolutionary relationships4 1

between dietary breadth, absolute brain volume, and self-control. These findings provide4 2

a significant first step toward quantifying the primate cognitive phenome and explaining4 3

the process of cognitive evolution.4 4
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Significance Statement4 5

Although scientists have identified surprising cognitive flexibility in animals and4 6

potentially unique features of human psychology, we know less about the selective forces4 7

that favor cognitive evolution, or the proximate biological mechanisms underlying this4 8

process. We tested 36 species in two problem solving tasks measuring self-control and4 9

evaluated the leading hypotheses regarding how and why cognition evolves. Across50

species, differences in absolute (not relative) brain volume best-predicted performance on51

these tasks. Within primates, dietary breadth also predicted cognitive performance,52

whereas social group size did not. These results suggest that increases in absolute brain53

size provided the biological foundation for evolutionary increases in self-control, and54

implicate species differences in feeding ecology as a potential selective pressure favoring55

these skills.56

57
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Introduction62

Since Darwin, understanding the evolution of cognition has been widely regarded as one63

of the greatest challenges for evolutionary research (1). Although researchers have64

identified surprising cognitive flexibility in a range of species (2-40) and potentially65

derived features of human psychology (41-61), we know much less about the major66

forces shaping cognitive evolution (62-71). With the notable exception of Bitterman’s67

landmark studies conducted several decades ago (63, 72-74), most research comparing68

cognition across species has been limited to small taxonomic samples (70, 75). With69

limited comparable experimental data on how cognition varies across species, previous7 0

research has largely relied on proxies for cognition (e.g. brain size) or meta-analyses7 1

when testing hypotheses about cognitive evolution (76-92). The lack of cognitive data7 2

collected with similar methods across large samples of species precludes meaningful7 3

species comparisons that can reveal the major forces shaping cognitive evolution across7 4

species, including humans (48, 70, 89, 93-98).7 5

To address these challenges we measured cognitive skills for self-control in 367 6

species of mammals and birds (Fig 1) tested using the same experimental procedures, and7 7

evaluated the leading hypotheses for the neuroanatomical underpinnings and ecological7 8

drivers of variance in animal cognition. At the proximate level, both absolute (77, 99-7 9

107) and relative brain size (108-112) have been proposed as mechanisms supporting8 0

cognitive evolution. Evolutionary increases in brain size (both absolute and relative) and8 1

cortical reorganization are hallmarks of the human lineage and are believed to index8 2

commensurate changes in cognitive abilities (52, 105, 113-115). Further, given the high8 3

metabolic costs of brain tissue (116-121) and remarkable variance in brain size across8 4
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species (108, 122), it is expected that the energetic costs of large brains are offset by the8 5

advantages of improved cognition. The cortical reorganization hypothesis suggests that8 6

selection for absolutely larger brains – and concomitant cortical reorganization – was the8 7

predominant mechanism supporting cognitive evolution (77, 91, 100-106, 120). In8 8

contrast, the encephalization hypothesis argues that an increase in brain volume relative8 9

to body size was of primary importance (108, 110, 111, 123). Both of these hypotheses90

have received support through analyses aggregating data from published studies of91

primate cognition and reports of ‘intelligent’ behavior in nature – both of which correlate92

with measures of brain size (76, 77, 84, 92, 110, 124).93

With respect to selective pressures, both social and dietary complexity have been94

proposed as ultimate causes of cognitive evolution. The social intelligence hypothesis95

proposes that increased social complexity (frequently indexed by social group size) was96

the major selective pressure in primate cognitive evolution (6, 44, 48, 50, 87, 115, 120,97

125-141). This hypothesis is supported by studies showing a positive correlation98

between a species’ typical group size and neocortex ratio (80, 81, 85-87, 129, 142-146),99

cognitive differences between closely related species with different group sizes (130, 137,1 00

147, 148), and evidence for cognitive convergence between highly social species (26, 31,1 01

149-151). The foraging hypothesis posits that dietary complexity, indexed by field1 02

reports of dietary breadth and reliance on fruit – a spatiotemporally distributed resource –1 03

was the primary driver of primate cognitive evolution (152-155). This hypothesis is1 04

supported by studies linking diet quality and brain size in primates (79, 81, 86, 142, 156),1 05

and experimental studies documenting species differences in cognition that relate to1 06

feeding ecology (94, 157-167).1 0 7
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While each of these hypotheses has received empirical support, a comparison of1 0 8

the relative contributions of the different proximate and ultimate explanations requires:1 09

(i) a cognitive dataset covering a large number of species tested using comparable1 1 0

experimental procedures; (ii) cognitive tasks that allow valid measurement across a range1 1 1

of species with differing morphology, perception and temperament; (iii) a representative1 1 2

sample within each species to obtain accurate estimates of species-typical cognition; (iv)1 1 3

phylogenetic comparative methods appropriate for testing evolutionary hypotheses; and1 1 4

(v) unprecedented collaboration to collect these data from populations of animals around1 1 5

the world (70).1 1 6

Here, we present the first large-scale collaborative dataset and comparative1 1 7

analysis of this kind, focusing on the evolution of self-control. We chose to measure self-1 1 8

control – the ability to inhibit a prepotent but ultimately counterproductive behavior –1 1 9

because it is a crucial and well-studied component of executive function and is involved1 20

in diverse decision-making processes (168-170). For example, animals require self-1 21

control when avoiding feeding or mating in view of a higher-ranking individual, sharing1 22

food with kin, or searching for food in a new area rather than a previously rewarding1 23

foraging site. In humans, self-control has been linked to health, economic, social, and1 24

academic achievement, and is known to be heritable (171-173). In song sparrows, a1 25

study using one of the tasks reported here found a correlation between self-control and1 26

song repertoire size, a predictor of fitness in this species (174). In primates, performance1 27

on a series of nonsocial self-control control tasks was related to variability in social1 28

systems (175), illustrating the potential link between these skills and socioecology. Thus,1 29
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tasks that quantify self-control are ideal for comparison across taxa given these robust1 3 0

behavioral correlates, heritable basis, and potential impact on reproductive success.1 3 1

In this study we tested subjects on two previously implemented self-control tasks.1 3 2

In the A not B task (27 species, N = 344), subjects were first familiarized with finding1 3 3

food in one location (container A) for three consecutive trials. In the test trial, subjects1 3 4

initially saw the food hidden in the same location (container A), but then moved to a new1 3 5

location (container B) before they were allowed to search (Movie S1). In the cylinder1 3 6

task (32 species, N = 439), subjects were first familiarized with finding a piece of food1 3 7

hidden inside an opaque cylinder. In the following ten test trials, a transparent cylinder1 3 8

was substituted for the opaque cylinder. To successfully retrieve the food, subjects1 3 9

needed to inhibit the impulse to reach for the food directly (bumping into the cylinder) in1 4 0

favor of the detour response they had used during the familiarization phase (Movie S2).1 4 1

Thus, the test trials in both tasks required subjects to inhibit a prepotent motor1 4 2

response (searching in the previously rewarded location or reaching directly for the1 4 3

visible food), but the nature of the correct response varied between tasks. Specifically, in1 4 4

the A not B task subjects were required to inhibit the response that was previously1 4 5

successful (searching in location A) whereas in the cylinder task subjects were required1 4 6

to perform the same response as in familiarization trials (detour response), but in the1 4 7

context of novel task demands (visible food directly in front of the subject).1 4 8

Results1 4 9

Across species and accounting for phylogeny, performance on the two tasks was strongly1 50

correlated (R = 0.53, N = 23, p < 0.01). Thus, species (n = 23) that participated in both1 51

cognitive tasks were assigned a composite score averaging performance across tasks.1 52
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Because the two tasks assessed complementary but not identical abilities, the composite1 53

score serves as a general index of self-control across tasks. Phylogenetic analyses1 54

revealed that scores were more similar among closely related species, with the maximum1 55

likelihood estimate of  – a measure of phylogenetic signal – significantly greater than1 56

zero in most cases (Table 1). For both tasks, scores from multiple populations of the same1 57

species (collected by different researchers at different sites) were highly correlated1 58

(cylinder task: r = 0.95, n = 5, p = 0.01; A not B task: r = 0.87, n = 6, p = 0.03; see SI).1 59

To control for the non-independence of species level data, we used phylogenetic1 60

generalized least squares (PGLS) to test the association between performance on the1 61

cognitive tasks and the explanatory variables associated with each hypothesis. Our1 62

neuroanatomical predictors included measures of absolute brain volume (endocranial1 63

volume [ECV]), residual brain volume (residuals from a phylogenetic regression of ECV1 64

predicted by body mass [ECV residuals]) and Jerrison’s (108) encephalization quotient1 65

(EQ; see Methods).1 66

Across species, absolute brain volume (measured as ECV) was a robust predictor1 67

of performance (Fig 2; Table 2) supporting the predictions of the cortical reorganization1 68

hypothesis. ECV covaried positively with performance on the cylinder task and the1 69

composite score and explained substantial variance in performance (r2 = 0.43-0.60; Table1 7 0

2). This association was much weaker for the A not B task, reflecting that the largest-1 7 1

brained species (Asian elephant) had the lowest score on this measure (Fig 2; Table 2).1 7 2

The same analysis excluding the elephant yielded a strong and significant positive1 7 3

association between ECV and scores on the A not B task (Fig 2; Table 2). Across the1 7 4

entire sample, residual brain volume was far less predictive than absolute brain volume: it1 7 5
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explained only 3% of variance in composite scores, and was a significant predictor of1 7 6

performance in only one of the tasks (Table 2; SI; Fig 2). EQ was positively related to1 7 7

composite scores across species (β = 0.28, t21 = 3.23, p < 0.01, λ = 0, r2 = 0.33) but again1 7 8

explained far less variance than absolute brain volume.1 7 9

We conducted the same analyses using only primates (23 species, 309 subjects),1 8 0

the best-represented taxonomic group in our dataset. Within primates, absolute brain1 8 1

volume was the best predictor of performance across tasks and explained substantial1 8 2

variation across species (r2 = 0.55-0.68; Fig 3; Table 2). In contrast to the analysis across1 8 3

all species, residual brain volume was predictive of performance on both tasks within1 8 4

primates, although it explained much less variance than absolute brain volume (r2 = 0.18-1 8 5

0.30; Fig 3; Table 2). Within primates the analysis using EQ as a predictor of composite1 8 6

scores was similar to that using ECV residuals (β = 0.24, t13 = 1.65, p = 0.06, λ = 0.66, r21 8 7

= 0.17).1 8 8

We also restricted the analyses to only the non-primate species in our sample (131 8 9

species, 258 subjects). Within the non-primate species, ECV was again the best predictor1 90

of self-control, and was significantly and positively associated with composite scores and1 91

scores on the cylinder task, but not the A not B task (Table 2). Removing the Asian1 92

elephant from the analysis of the A not B task did not change this result (β = 0.09, t6 =1 93

1.37, p = 0.11, λ = 0, r2 = 0.24). Residual brain volume was not a significant predictor of1 94

any of these measures (Table 2), and EQ was unrelated to composite scores (β = -.01, t6 =1 95

-0.08, p = 0.53, λ = 0.28, r2 < 0.01).1 96

We used the experimentally derived measures of self-control to investigate the1 97

two leading ecological hypotheses that have been proposed as catalysts of primate1 98
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cognitive evolution. We focused on primates because these species are best represented1 99

in our dataset, and the ecological data have been systematically compiled and related to200

neuroanatomical proxies for cognition in these species. As a measure of social201

complexity, we tested the hypothesis that social group size, which covaries with202

neocortex ratio in anthropoid primates (129), would predict performance in the self-203

control tasks. To explore multiple variants of this hypothesis, we investigated both204

species-typical population group size and foraging group size as predictor variables.205

Neither measure of group size was associated with task performance (Fig 3; Table 2;206

Table S7), echoing findings using observational data on behavioral flexibility (92). We207

tested the foraging hypotheses by examining whether the degree of frugivory (% fruit in208

diet) or dietary breadth (number of dietary categories reported to have been consumed by209

each species (92)) predicts performance. The percent of fruit in a species’ diet was not a21 0

significant predictor of any of the cognitive measures (Fig 3; Table 2; Table S7).21 1

However, dietary breadth covaried strongly with our measures of self-control (Fig 3;21 2

Table 2; Table S7). Supplemental analyses involving home range size, day journey length,21 3

the defensibility index, and substrate use revealed no significant associations (SI).21 4

To provide an integrated test of variance explained by absolute brain volume and21 5

dietary breadth, we fit a multiple regression including both terms as predictors of21 6

primates’ composite cognitive scores. This model explained 80% of variance in21 7

performance between species with significant and positive coefficients for both absolute21 8

ECV and diet breadth, controlling for the effects of one another (ECV: t11 = 2.10, p =21 9

0.03; diet breadth: t11 = 4.05, p < 0.01; λ = 0.56, r2 = 0.80). Thus, while correlated with220

one another (t = 2.83, p = 0.01, λ = 0, r2 = 0.29), both brain volume and dietary221
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complexity account for unique components of variance in primate cognition, together222

explaining the majority of interspecific variation on these tasks. Interestingly, in this223

model the independent effect for dietary breadth (r2 =0.59) was considerably larger than224

that for brain volume (r2 = 0.28).225

We also assessed the extent to which our experimental data corroborate species-226

specific reports of intelligent behavior in nature (92). Controlling for observational227

research effort, our experimental measures covaried positively with reports of innovation,228

extractive foraging, tool use, social learning, and tactical deception in primates (Table 2;229

Table S7; SI). Our experimental measure also covaried with a ‘general intelligence’23 0

factor ‘gs’ (92) derived from these observational measures (Table 2; Table S7; SI).23 1

Lastly, we used data from the extant species in our dataset to reconstruct23 2

estimated ancestral states in the primate phylogeny. Maximum likelihood reconstruction23 3

of ancestral states implies gradual cognitive evolution in the lineage leading to apes, with23 4

a convergence between apes and capuchin monkeys (Fig 4; SI). Thus, in addition to23 5

statistical inferences about ancestral species, this model reveals branches in the23 6

phylogeny associated with rapid evolutionary change, convergence and divergence, and23 7

the historical contexts in which these events occurred.23 8

Discussion23 9

Our phylogenetic comparison of three-dozen species supports the hypothesis that24 0

the major proximate mechanism underlying the evolution of self-control is increases in24 1

absolute brain volume. Our findings also implicate dietary breadth as an important24 2

ecological correlate, and potential selective pressure for the evolution of these skills. In24 3

contrast, residual brain volume was only weakly related – and social group size was24 4
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unrelated – to variance in self-control. The weaker relationship with residual brain24 5

volume and lack of relationship with social group size is particularly surprising given the24 6

common use of relative brain volume as a proxy for cognition and historical emphasis on24 7

increases in social group size as a likely driver of primate cognitive evolution (85).24 8

Why might absolutely larger brains confer greater cognitive advantages than24 9

relatively larger brains? One possibility is that as brains get absolutely larger, the total250

number of neurons increases, and brains tend to become more modularized, perhaps251

facilitating the evolution of new cognitive networks (91, 101, 102). Indeed, recent data252

suggest that human brains are notable mainly for their absolute volume, and otherwise253

conform to the (re)organizational expectations for a primate brain of their volume (100,254

104-107, 176, 177). Due to limited comparative data on more detailed aspects of255

neuroanatomy (e.g. neuron counts, regional volumes, functional connectivity) our256

analyses were restricted to measures derived from whole brain volumes. However, an257

important question for future research will be whether finer measures of the258

neuroanatomical substrates involved in regulating self-control (e.g. prefrontal cortex)259

explain additional variation in cognition across species. For example, the best performing260

species in our sample were predominantly anthropoid primates, species that have evolved261

unique prefrontal areas that are thought to provide a cognitive advantage in foraging262

decisions that rely on executive function (178-180). Nonetheless, other species without263

these neuroanatomical specializations also performed well, raising the possibility that the264

cognitive skills required for success in these tasks may be subserved by diverse but265

functionally similar neural mechanisms across species (e.g., 181). Thus, while266

evolutionary increases in brain volume create the potential for new functional areas or267
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cognitive networks, more detailed data from the fields of comparative and behavioral268

neuroscience will be essential for understanding the biological basis of species269

differences in cognition (e.g., (182-185)).27 0

Within primates we also discovered that dietary breadth is strongly related to27 1

levels of self-control. One plausible ultimate explanation is that individuals with the most27 2

cognitive flexibility may be most likely to explore and exploit new dietary resources or27 3

methods of food acquisition, which would be especially important in times of scarcity. If27 4

these behaviors conferred fitness benefits, selection for these traits in particular lineages27 5

may have been an important factor in the evolution of species differences in self-control.27 6

A second possibility is that dietary breadth represents an ecological constraint on brain27 7

evolution, rather than a selective pressure per se (116, 156, 186, 187). Accordingly,27 8

species with broad diets may be most capable of meeting the metabolic demands of27 9

growing and maintaining larger brains, with brain enlargement favored through a range28 0

of ecological selective pressures (86). Nonetheless, after accounting for shared variance28 1

between dietary breadth and brain volume, dietary breadth was still strongly associated28 2

with performance on self-control tasks. Thus, it is likely that dietary breadth acts both as28 3

a selective pressure and a metabolic facilitator of cognitive evolution. Given that foraging28 4

strategies have also been linked to species differences in cognition in non-primate taxa28 5

(94, 157-160, 162, 163, 167), it remains an important question whether dietary breadth28 6

will have similar explanatory power in other orders of animals.28 7

The data reported here likely represent relatively accurate estimates of species-28 8

typical cognition because we collected data from large samples within each species28 9

(mean n = 15.3 ± 2.0 subjects per species, range = 6-66), scores from multiple290
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populations of the same species were highly correlated, and performance was not291

associated with previous experience in cognitive tasks (SI). Thus, while populations may292

vary to some extent (e.g. due to differences in rearing history or experimental experience),293

these differences are small relative to the interspecific variation we observed. The294

relationship between our experimental measures of self-control and observational295

measures of behavioral flexibility also suggest that our measures have high ecological296

validity, and underscore the complementary roles of observational and experimental297

approaches for the study of comparative cognition.298

Our tasks could be flexibly applied with a range of species because all species we299

tested exhibited the perceptual, motivational, and motoric requirements for participation.3 00

Thus, despite the fact that these species may vary in their reliance on vision, visual acuity,3 01

or motivation for food rewards, all species met the same pretest criteria, assuring similar3 02

proficiency with basic task demands before being tested. Nonetheless, in any comparative3 03

cognitive test it is possible that features of individual tasks are more appropriate for some3 04

species than others. One mechanism to overcome this challenge is through the approach3 05

implemented here, in which (i) multiple tasks designed to measure the same underlying3 06

construct are used, (ii) the correlation between tasks is assessed across species, and (iii) a3 0 7

composite score averaging performance across tasks is used as the primary dependent3 0 8

measure. In cases where data are limited to a single measure from a species, the results3 09

must be interpreted extremely cautiously (e.g. performance of the Asian elephant on the3 1 0

A not B task).3 1 1

The relationship between self-control and absolute brain volume is unlikely to be3 1 2

a non-adaptive byproduct of selection for increases in body size for several reasons. First,3 1 3
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a comparison of models using only body mass or ECV as the predictor of composite3 1 4

scores yielded stronger support for the ECV model both in an analysis across all species3 1 5

(∆AIC = 0.77), and within primates (∆AIC = 3.12). However, it is only within primates that3 1 6

the change in AIC between the body mass and ECV models exceeded the 2-unit3 1 7

convention for meaningful difference (188). Second, the number of neurons in primate3 1 8

brains scales isometrically with brain size, indicating selection for constant neural density3 1 9

and neuron size, a scaling relationship that contrasts with other orders of animals (100).3 20

Thus, the relationship between absolute brain volume and self-control may be most3 21

pronounced in the primate species in our sample, and may not generalize to all other3 22

large-brained animals (e.g. whales, elephants), or taxa whose brains are organized3 23

differently than primates (e.g. birds). Nonetheless, even when removing primate species3 24

from the analysis, absolute brain volume remained the strongest predictor of species3 25

differences in self-control. Third, ancestral state reconstructions indicate that both3 26

absolute and relative brain volume have increased over time in primates, while body mass3 27

has not (189). Lastly, although not as predictive as absolute brain volume, residual brain3 28

volume was a significant predictor of self-control in several of our analyses. Thus,3 29

multiple lines of evidence implicate selection for brain volume (and organization)3 3 0

independent of selection for body size, and our data illustrate the cognitive consequences3 3 1

of these evolutionary trends.3 3 2

With the exception of dietary breadth we found no significant relationships3 3 3

between several socioecological variables and measures of self-control. These findings3 3 4

are especially surprising given that both the percentage of fruit in the diet and social3 3 5

group size correlate positively with neocortex ratio in anthropoid primates (86, 142). Our3 3 6
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findings suggest that the effect of social and ecological complexity may be limited to3 3 7

influencing more specialized, and potentially domain-specific forms of cognition (190-3 3 8

198). For example, among lemurs, sensitivity to cues of visual attention used to3 3 9

outcompete others for food covaries positively with social group size, while a nonsocial3 4 0

measure of self-control does not (147). Therefore, our ability to evaluate the predicted3 4 1

relationships between socioecology and cognition will depend on measures designed to3 4 2

assess skills in specific cognitive domains (e.g. visual perspective-taking or spatial3 4 3

memory). In addition, more nuanced measures of social and ecological complexity (e.g.3 4 4

coalitions or social networks) may be necessary to detect these relationships (199).3 4 5

Overall, our results present a critical step toward understanding the cognitive3 4 6

implications of evolutionary shifts in brain volume and dietary complexity. They also3 4 7

underscore the need for future cognitive studies investigating how ecological factors3 4 8

drive cognitive evolution in different psychological domains. These experimental3 4 9

measures will be particularly important given that even the most predictive3 50

neuroanatomical measures failed to account for more than 30% of cognitive variance3 51

across species in this study. With a growing comparative database on the cognitive skills3 52

of animals, we will gain significant insights into the nature of intelligence itself, and the3 53

extent to which changes in specific cognitive abilities have evolved together, or3 54

mosaically, across species. This increased knowledge of cognitive variation among living3 55

species will also set the stage for stronger reconstructions of cognitive evolutionary3 56

history. These approaches will be especially important given that cognition leaves so few3 57

traces in the fossil record. In the era of comparative genomics and neurobiology, this3 58
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research provides a critical first step toward mapping the primate cognitive phenome and3 59

unraveling the evolutionary processes that gave rise to the human mind.3 60

Methods3 61

In the A not B task, subjects were required to resist searching for food in a3 62

previous hiding place when the food reward was visibly moved to a novel location.3 63

Subjects watched as food was hidden in one of three containers positioned at the exterior3 64

of a three-container array and were required to correctly locate the food in this container3 65

on three consecutive familiarization trials before advancing to the test. In the test trial,3 66

subjects initially saw the food hidden in the same container (container A), but then3 67

watched as the food was moved to another container at the other end of the array3 68

(container B; Movie S1). Subjects were then allowed to search for the hidden food, and3 69

the accuracy of the first search location was recorded. This procedure differs slightly3 7 0

from the original task used by Piaget (200) in which test trials involved the immediate3 7 1

hiding of the reward in location B, without first hiding the reward in location A. Our3 7 2

method followed the procedure of Amici et al. (175), and similarly we conducted one test3 7 3

trial per subject. For the A not B task, our dependent measure was the percentage of3 7 4

individuals that responded correctly on the test trial within each species.3 7 5

In the cylinder task, subjects were first familiarized with finding a piece of food3 7 6

hidden inside an opaque cylinder. Subjects were required to successfully find the food by3 7 7

detouring to the side of the cylinder on 4/5 consecutive trials before advancing to the test.3 7 8

In the following ten test trials, a transparent cylinder was substituted for the opaque3 7 9

cylinder. To successfully retrieve the food, subjects needed to inhibit the impulse to reach3 8 0

for the food directly (bumping into the cylinder) in favor of the detour response they had3 8 1

used during the familiarization (Movie S2). Although subjects may have initially failed3 8 2
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to perceive the transparent barrier on the first test trial, they had ample opportunity to3 8 3

adjust their behavior through visual, auditory and tactile feedback across the ten test trials.3 8 4

For the cylinder task our dependent measure was the percentage of test trials that a3 8 5

subject performed the correct detour response, which was averaged across individuals3 8 6

within species to obtain species means.3 8 7

In both tasks, all species were required to meet the same pretest criteria,3 8 8

demonstrating a basic understanding of the task, and allowing meaningful comparison of3 8 9

test data across species. Although the number of trials required to meet these criteria3 90

varied between species, we found no significant relationship between the number of3 91

pretest trials and test performance on either task (A not B: t25 = -1.83, λ = 0.52, p = 0.08; 3 92

Cylinder Task: t30 = -1.14, λ = 0.69, p = 0.26).For analyses involving brain volume, log3 93

endocranial volume (ECV) was used as the measure of absolute brain volume and we3 94

extracted residuals from a PGLS model of log ECV predicted by log body mass as our3 95

primary measure of relative brain volume (ECV residuals; SI). As an additional measure3 96

of relative brain size we incorporated Jerrison’s (108) encephalization quotient (EQ),3 97

calculated as: EQ = brain mass/0.12 * body mass0.67. Although EQ and a residuals3 98

approach both measure deviation from an expected brain to body scaling relationship,3 99

they differ in that EQ measures deviation from a previously estimated allometric4 00

exponent using a larger dataset of species, whereas ECV residuals are derived from the4 01

actual scaling relationship within our sample, while accounting for phylogeny.4 02

To control for the non-independence of species level data, we used PGLS to test4 03

the association between performance on the cognitive tasks and the explanatory variables4 04

associated with each hypothesis. We predicted that brain volume, group size, and4 05
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measures of dietary complexity would covary positively with cognitive performance.4 06

Thus, each of these predictions was evaluated using directional tests following the4 0 7

conventions (δ = 0.01, �= 0.04) recommended by Rice & Gaines (201), which allocates 4 0 8

proportionally more of the null distribution in the predicted direction, while retaining4 09

statistical power to detect unexpected patterns in the opposite direction. We incorporated4 1 0

the parameter λ in the PGLS models to estimate phylogenetic signal and regression 4 1 1

parameters simultaneously, using a maximum likelihood procedure (202, 203).4 1 2
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Table 1. Phylogenetic signal in the cognitive data. � (ML) indicates the maximum 920

likelihood estimate for �, a statistical measure of phylogenetic signal (203).  P-values are 921

based on a likelihood ratio test comparing the model with the maximum likelihood922

estimate of � to a model where � is fixed at 0 (the null alternative representing no 923

phylogenetic signal).924
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Table 2. The relationship between brain volume, socioecology, observational measures93 9

of cognition, and performance on the cognitive tasks. The sign of the t-statistic indicates94 0

the direction of the relationship between variables. Data regarding social learning,94 1

innovation, extractive foraging, tool use, tactical deception (all of which covary), and94 2

primate ‘gs’ scores were adjusted for research effort and obtained from Reader et al. (92)94 3

and Byrne & Corp (124). PCA 1 is equivalent to the ‘gs’ score calculated by Reader et al.94 4

(92) restricted to species in this dataset. We used the arcsine square-root transformed94 5

mean proportion of correct responses for each species as the dependent measure in all94 6

analyses, as this best met the statistical assumptions of our tests. Socioecological data94 7

were log transformed (group size) or arcsine square root transformed (proportion fruit in94 8

diet) for analysis.94 9

950

951
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952

Figure Captions953

Figure 1. A phylogeny of the species included in this study. Branch lengths are954

proportional to time except where long branches have been truncated by parallel diagonal955

lines (split between mammals and birds ~292 MY). MY = millions of years.956

957

Figure 2. Cognitive scores as a function of log endocranial volume (ECV) and residual958

brain volume (ECV residuals). In both tasks and in the composite measure, ECV was a959

significant predictor of self-control. Relative brain volume universally explained less960

variance. Plots show statistically transformed data (see Methods for details). The gray961

dashed line shows an alternate model excluding the elephant from analysis. OW = Old962

World, NW = New World.963

964

Figure 3. Cognitive scores for primates as a function of A) absolute and residual965

endocranial volume (ECV), B) foraging and population social group size, and C)966

frugivory and dietary breadth. Absolute ECV, residual ECV and dietary breadth covaried967

positively with measures of self-control. Plots show statistically transformed data (see968

Methods and Table 2 for details). OW = Old World, NW = New World.969

97 0

Figure 4. Ancestral state reconstruction of cognitive skills for self-control. We generated97 1

the maximum likelihood estimates for ancestral states along the primate phylogeny using97 2

data from the composite measure (average score across tasks for species that participated97 3

in both tasks). The red circles along the tips of the phylogeny are proportional to the97 4
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extant species’ composite scores (larger circles represent higher scores). The blue circles97 5

at the internal nodes of the phylogeny represent the estimated ancestral states for the97 6

composite score, with the estimated value indicated within circles at each node.97 7

97 8
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