559 research outputs found

    Connecting the time domain community with the Virtual Astronomical Observatory

    Get PDF
    The time domain has been identified as one of the most important areas of astronomical research for the next decade. The Virtual Observatory is in the vanguard with dedicated tools and services that enable and facilitate the discovery, dissemination and analysis of time domain data. These range in scope from rapid notifications of time-critical astronomical transients to annotating long-term variables with the latest modeling results. In this paper, we will review the prior art in these areas and focus on the capabilities that the VAO is bringing to bear in support of time domain science. In particular, we will focus on the issues involved with the heterogeneous collections of (ancillary) data associated with astronomical transients, and the time series characterization and classification tools required by the next generation of sky surveys, such as LSST and SKA.Comment: Submitted to Proceedings of SPIE Observatory Operations: Strategies, Processes and Systems IV, Amsterdam, 2012 July 2-

    Human interaction with the divine, the sacred, and the deceased: topics that warrant increased attention by psychologists

    Get PDF
    Humans have likely been attempting to communicate with entities believed to exist, such as the divine, sacred beings, and deceased people, since the dawn of time. Across cultures and countries, many believe that interaction with the immaterial world is not only possible but a frequent experience. Most religious traditions across the globe focus many rituals and activities around prayer to an entity deemed divine or sacred. Additionally, many people–religious, agnostic, and atheists alike–report communication with their departed loved ones. During highly stressful times associated with natural disasters, war, pandemics, and other threats to human life, the frequency and intensity of these activities and associated experiences substantially increase. Although this very human phenomenon seems to be universal, the empirical literature on the topic within psychology is thin. This paper discussed the topic and reviews what we know from the professional literature about how people perceive communication with these unseen entities. It highlights the perceptual and social cognition evidence and discussed the role of attribution theory, which might help us understand the beliefs, motivations, and practices of those engaged with communication with the unseen. Empirical laboratory research with mediums is discussed as well, examining the evidence for communication with the deceased. Final reflections and suggestions for future research are also offered

    Implementing a Registry Federation for Materials Science Data Discovery

    Get PDF
    As a result of a number of national initiatives, we are seeing rapid growth in the data important to materials science that are available over the web. Consequently, it is becoming increasingly difficult for researchers to learn what data are available and how to access them. To address this problem, the Research Data Alliance (RDA) Working Group for International Materials Science Registries (IMRR) was established to bring together materials science and information technology experts to develop an international federation of registries that can be used for global discovery of data resources for materials science. A resource registry collects high-level metadata descriptions of resources such as data repositories, archives, websites, and services that are useful for data-driven research. By making the collection searchable, it aids scientists in industry, universities, and government laboratories to discover data relevant to their research and work interests. We present the results of our successful piloting of a registry federation for materials science data discovery. In particular, we out a blueprint for creating such a federation that is capable of amassing a global view of all available materials science data, and we enumerate the requirements for the standards that make the registries interoperable within the federation. These standards include a protocol for exchanging resource descriptions and a standard metadata schema for encoding those descriptions. We summarize how we leveraged an existing standard (OAI-PMH) for metadata exchange. Finally, we review the registry software developed to realize the federation and describe the user experience

    Managing Distributed Software Development in the Virtual Astronomical Observatory

    Full text link
    The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common visionComment: 7 pages, 2 figures, SPIE 2012 conferenc

    SARS-like WIV1-CoV poised for human emergence

    Get PDF
    The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS)-CoV highlights the continued risk of cross-species transmission leading to epidemic disease. This manuscript describes efforts to extend surveillance beyond sequence analysis, constructing chimeric and full-length zoonotic coronaviruses to evaluate emergence potential. Focusing on SARS-like virus sequences isolated from Chinese horseshoe bats, the results indicate a significant threat posed by WIV1-CoV. Both full-length and chimeric WIV1-CoV readily replicated efficiently in human airway cultures and in vivo, suggesting capability of direct transmission to humans. In addition, while monoclonal antibody treatments prove effective, the SARS-based vaccine approach failed to confer protection. Together, the study indicates an ongoing threat posed by WIV1-related viruses and the need for continued study and surveillance

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the flavour composition of dijet events in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at &#8730;s=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb−1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y|&#60;2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions
    corecore