1,025 research outputs found

    Temporal and geographic patterns of kinship structure in common dolphins (Delphinus delphis) suggest site fidelity and female-biased long-distance dispersal

    Get PDF
    Social structure plays a crucial role in determining a species’ dispersal patterns and genetic structure. Cetaceans show a diversity of social and mating systems, but their effects on dispersal and genetic structure are not well known, in part because of technical difficulties in obtaining robust observational data. Here, we combine genetic profiling and GIS analysis to identify patterns of kin distribution over time and space, to infer mating structure and dispersal patterns in short-beaked common dolphins (Delphinus delphis). This species is highly social, and exhibits weak spatial genetic structure in the Northeast Atlantic and Mediterranean Sea, thought to result from fluid social structure and low levels of site fidelity. We found that although sampled groups were not composed of closely related individuals, close kin were frequently found in the same geographic location over several years. Our results suggest that common dolphin exhibits some level of site fidelity, which could be explained by foraging for temporally varying prey resource in areas familiar to individuals. Dispersal from natal area likely involves long-distance movements of females, as males are found more frequently than females in the same locations as their close kin. Long-distance dispersal may explain the near panmixia observed in this species. By analysing individuals sampled in the same geographic location over multiple years, we avoid caveats associated with divergence-based methods of inferring sex-biased dispersal. We thus provide a unique perspective on this species’ social structure and dispersal behaviour, and how it relates to the observed low levels of population genetic structure in European waters

    Comparison of behavioural tendencies between “dangerous dogs” and other domestic dog breeds - Evolutionary context and practical implications

    Get PDF
    Aggressive behaviour by dogs is a considerable social problem, but the ability to predict which individuals may have increased aggressive tendencies is very limited, restricting the development of efficient preventive measures. There is a common perception that certain breeds are more likely to exhibit aggressive behaviour, which has contributed to the introduction of breed-specific legislation. The rationale for such legislation explicitly assumes high heritability of this trait while also implying relatively little variation within breeds; these assumptions are largely untested. We compared behavioural tendencies between 8 breeds that are subject to legislation in at least one country and 17 breeds that are not subject to legislation using two validated psychometric tools: the Dog Impulsivity Assessment Scale (DIAS), which scores elements of impulsivity, including a tendency for aggressive behaviour, and Positive and Negative Activation Scale (PANAS), which scores sensitivity to positive and negative stimuli (which may trigger aggressive responses). We found that the two groups of breeds do not differ significantly in the specific DIAS factor relating to aggressive behaviour, “Aggression Threshold and Response to Novelty”, or any other DIAS and PANAS factors. We found large variations in all behavioural tendencies measured by both psychometric scales within both groups and within each breed studied. Taken together, our findings indicate that breed alone is not a reliable predictor of individual behavioural tendencies, including those related to aggression, and therefore breed-specific legislation is unlikely to be an effective instrument for reducing risk

    Diversifying selection between pure-breed and free-breeding dogs inferred from genome-wide SNP analysis

    Get PDF
    Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e. unrestrained in mate choice. Many traits in free-breeding dogs (FBDs) may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. We used a Bayesian approach with strict false-positive control criteria to identify FST-outlier SNPs between FBDs and either European or East Asian breeds, based on 167,989 autosomal SNPs. By identifying outlier SNPs located within coding genes, we found four candidate genes under diversifying selection shared by these two comparisons. Three of them are associated with the Hedgehog (HH) signalling pathway regulating vertebrate morphogenesis. A comparison between FBDs and East Asian breeds also revealed diversifying selection on BBS6 gene, which was earlier shown to cause snout shortening and dental crowding via disrupted HH signalling. Our results suggest that relaxation of natural and sexual selection in pure-breed dogs as opposed to FBDs could have led to mild changes in regulation of the HH signalling pathway. HH inhibits adhesion and migration of neural crest cells from neural tube, and minor deficits of these cells during embryonic development have been proposed as the underlying cause of “domestication syndrome”. This suggests that the process of breed formation involved the same genetic and developmental pathways as the process of domestication

    Genetic inference of the mating system of free-ranging domestic dogs

    Get PDF
    Domestication has greatly changed the social and reproductive behavior of dogs relative to that of wild members of the genus Canis, which typically exhibit social monogamy and extended parental care. Unlike a typical gray wolf pack that consists of a single breeding pair and their offspring from multiple seasons, a group of free-ranging dogs (FRDs) can include multiple breeding individuals of both sexes. To understand the consequences of this shift in reproductive behavior, we reconstructed the genetic pedigree of an FRD popula�tion and assessed the kinship patterns in social groups, based on genome-wide single-nucleotide polymorphism genotypes. Consistent with behavioral observations, the mating system of the study population was characterized by polygynandry. Instead of the discreet family units observed in wolves, FRDs were linked by a network of kinship relationships that spread across packs. However, we also observed reproduction of the same male–female pairs in multiple seasons, retention of adult offspring in natal packs, and dispersal between neighboring packs—patterns in common with wolves. Although monogamy is the predominant mating system in wolves, po�lygyny and polyandry are occasionally observed in response to increased food availability. Thus, polygynandry of domestic dogs was likely influenced by the shift in ecological niche from an apex predator to a human commensal

    Factors Affecting the Outcome and Intensity of Intergroup Encounters in Crested Macaques (Macaca nigra)

    Get PDF
    Conspecific animal groups often compete for access to fitness-enhancing resources. The more valuable the resource at stake is, the greater the costs groups can afford to outcompete their neighbours, leading to between-group conflicts. We investigated what factors affected intergroup encounter outcome (win, loss, or draw) and intensity (level of aggression and duration) in wild, crested macaques (Macaca nigra). We collected data on 158 dyadic intergroup encounters among three groups of crested macaques in Tangoko Nature Reserve (Indonesia) between November 2015 and July 2016. Intergroup encounters were more likely to have a clear winner the larger the group size difference was between the opposing groups and when both groups rarely used the intergroup encounter location. Groups tended to win in specific parts of their home range, regardless of the numerical advantage, the frequency of use of the intergroup encounter location and its distance to the closest core area. Most encounters involved aggression, but contact aggression was rare. None of our candidate predictors helped to explain the differences in intergroup encounter escalation. Male intergroup aggression was more common than female intergroup aggression. The probability of female and male participation in intergroup aggression increased with the participation of the other sex. Males chased and attacked females in their group (i.e., herded them) in most encounters. Our study suggests that intragroup sexual conflict occurs during intergroup encounters in crested macaques. More detailed and longer studies on intergroup participation may help to understand the factors behind crested macaque intergroup encounter outcome and intensity

    Widespread, long-term admixture between grey wolves and domestic dogs across Eurasia and its implications for the conservation status of hybrids

    Get PDF
    Hybridisation between a domesticated species and its wild ancestor is an important conservation problem, especially if it results in the introgression of domestic gene variants into wild species. Nevertheless, the legal status of hybrids remains unregulated, partially because of the limited understanding of the hybridisation process and its consequences. The occurrence of hybridisation between grey wolves and domestic dogs is well-documented from different parts of the wolf geographic range, but little is known about the frequency of hybridisation events, their causes and the genetic impact on wolf populations. We analysed 61K SNPs spanning the canid genome in wolves from across Eurasia and North America and compared that data to similar data from dogs to identify signatures of admixture. The haplotype block analysis, which included 38 autosomes and the X chromosome, indicated the presence of individuals of mixed wolf-dog ancestry in most Eurasian wolf populations, but less admixture was present in North American populations. We found evidence for male-biased introgression of dog alleles into wolf populations, but also identified a first-generation hybrid resulting from mating between a female dog and a male wolf. We found small blocks of dog ancestry in the genomes of 62% Eurasian wolves studied and melanistic individuals with no signs of recent admixed ancestry, but with a dog-derived allele at a locus linked to melanism. Consequently, these results suggest that hybridisation has been occurring in different parts of Eurasia on multiple timescales and is not solely a recent phenomenon. Nevertheless, wolf populations have maintained genetic differentiation from dogs, suggesting that hybridisation at a low frequency does not diminish distinctiveness of the wolf gene pool. However, increased hybridisation frequency may be detrimental for wolf populations, stressing the need for genetic monitoring to assess the frequency and distribution of individuals resulting from recent admixture

    On the origin of mongrels: evolutionary history of free-breeding dogs in Eurasia

    Get PDF
    Although a large part of the global domestic dog population is free-ranging and free- breeding, knowledge of genetic diversity in these free-breeding dogs (FBDs) and their ancestry relations to pure-breed dogs is limited, and indigenous status of FBDs in Asia is uncertain. We analyse genome-wide SNP variability of FBDs across Eurasia, and show that they display weak genetic structure, and are genetically distinct from pure-breed dogs rather than constituting an admixture of breeds. Our results suggest that modern European breeds originated locally from European FBDs. East Asian and Arctic breeds show closest affinity to East Asian FBDs, and they both represent earliest-branching lineages in the phylogeny of extant Eurasian dogs. Our biogeographic reconstruction of ancestral distributions indicates a gradual westward expansion of East Asian indigenous dogs to the Middle East and Europe through Central and West Asia, providing evidence for a major expansion that shaped the patterns of genetic differentiation in modern dogs. This expansion was probably secondary and could have led to the replacement of earlier resident populations in Western Eurasia. This could explain why earlier studies based on modern DNA suggest East Asia as the region of dog origin, while ancient DNA and archaeological data point to Western Eurasia

    Grey wolf genomic history reveals a dual ancestry of dogs

    Get PDF
    The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canisfamiliaris) lived(1-8). Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT8840,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.Peer reviewe

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore