4,507 research outputs found

    The Impact of cold gas accretion above a mass floor on galaxy scaling relations

    Full text link
    Using the cosmological baryonic accretion rate and normal star formation efficiencies, we present a very simple model for star-forming galaxies (SFGs) that accounts for the mass and redshift dependencies of the SFR-Mass and Tully-Fisher relations from z=2 to the present. The time evolution follows from the fact that each modelled galaxy approaches a steady state where the SFR follows the (net) cold gas accretion rate. The key feature of the model is a halo mass floor M_{min}~10^{11} below which accretion is quenched in order to simultaneously account for the observed slopes of the SFR-Mass and Tully-Fischer relations. The same successes cannot be achieved via a star-formation threshold (or delay) nor by varying the SF efficiency or the feedback efficiency. Combined with the mass ceiling for cold accretion due to virial shock heating, the mass floor M_{min} explains galaxy "downsizing", where more massive galaxies formed earlier and over a shorter period of time. It turns out that the model also accounts for the observed galactic baryon and gas fractions as a function of mass and time, and the cosmic SFR density from z~6 to z=0, which are all resulting from the mass floor M_{min}. The model helps to understand that it is the cosmological decline of accretion rate that drives the decrease of cosmic SFR density between z~2 and z=0 and the rise of the cosmic SFR density allows us to put a constraint on our main parameter M_{min}~10^{11} solar masses. Among the physical mechanisms that could be responsible for the mass floor, we view that photo-ionization feedback (from first in-situ hot stars) lowering the cooling efficiency is likely to play a large role.Comment: 19pages, 14 figures, accepted to ApJ, updated reference

    Positive airway pressure for sleep-disordered breathing in acute quadriplegia: a randomised controlled trial.

    Full text link
    RATIONALE: Highly prevalent and severe sleep-disordered breathing caused by acute cervical spinal cord injury (quadriplegia) is associated with neurocognitive dysfunction and sleepiness and is likely to impair rehabilitation. OBJECTIVE: To determine whether 3 months of autotitrating CPAP would improve neurocognitive function, sleepiness, quality of life, anxiety and depression more than usual care in acute quadriplegia. METHODS AND MEASUREMENTS: Multinational, randomised controlled trial (11 centres) from July 2009 to October 2015. The primary outcome was neurocognitive (attention and information processing as measure with the Paced Auditory Serial Addition Task). Daytime sleepiness (Karolinska Sleepiness Scale) was a priori identified as the most important secondary outcome. MAIN RESULTS: 1810 incident cases were screened. 332 underwent full, portable polysomnography, 273 of whom had an apnoea hypopnoea index greater than 10. 160 tolerated at least 4 hours of CPAP during a 3-day run-in and were randomised. 149 participants (134 men, age 46±34 years, 81±57 days postinjury) completed the trial. CPAP use averaged 2.9±2.3 hours per night with 21% fully 'adherent' (at least 4 hours use on 5 days per week). Intention-to-treat analyses revealed no significant differences between groups in the Paced Auditory Serial Addition Task (mean improvement of 2.28, 95% CI -7.09 to 11.6; p=0.63). Controlling for premorbid intelligence, age and obstructive sleep apnoea severity (group effect -1.15, 95% CI -10 to 7.7) did not alter this finding. Sleepiness was significantly improved by CPAP on intention-to-treat analysis (mean difference -1.26, 95% CI -2.2 to -0.32; p=0.01). CONCLUSION: CPAP did not improve Paced Auditory Serial Addition Task scores but significantly reduced sleepiness after acute quadriplegia. TRIAL REGISTRATION NUMBER: ACTRN12605000799651

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The t t-bar production cross section (sigma[t t-bar]) is measured in proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS experiment, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in events with two leptons (electrons or muons) in the final state, at least two jets identified as jets originating from b quarks, and the presence of an imbalance in transverse momentum. The measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/- 2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction of the standard model.Comment: Replaced with published version. Included journal reference and DO

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore