38 research outputs found
Accountability and Reconfiguration: Self-Healing Lattice Agreement
An accountable distributed system provides means to detect deviations of system components from their expected behavior. It is natural to complement fault detection with a reconfiguration mechanism, so that the system could heal itself, by replacing malfunctioning parts with new ones. In this paper, we describe a framework that can be used to implement a large class of accountable and reconfigurable replicated services. We build atop the fundamental lattice agreement abstraction lying at the core of storage systems and cryptocurrencies.
Our asynchronous implementation of accountable lattice agreement ensures that every violation of consistency is followed by an undeniable evidence of misbehavior of a faulty replica. The system can then be seamlessly reconfigured by evicting faulty replicas, adding new ones and merging inconsistent states. We believe that this paper opens a direction towards asynchronous "self-healing" systems that combine accountability and reconfiguration
Poliethylene film packaging affects quality of "Lisbon" lemons during long-term storage
"Lisbon" lemons were divided into groups that were coated, packaged in polyethylene bags with or without a pouch containing KOH, or left unpackaged and uncoated; fruits were then stored at 8°C up to 15 weeks. Packaging significantly reduced weight loss and fruit mantained a fresh appearance. Fruits in bags without KOH showed the highest incidence of decay. In fact, KOH moisture-absorbing capability significantly decreased rots during 5 weeks of storage plus one week of shelf-life, if compared to packaged fruits without KOH. No signs of CI were detected in any treatment. Packaged fruits without KOH revealed the highest concentration of ethanol and acetaldehyde in the juice
RandSolomon: Optimally Resilient Random Number Generator with Deterministic Termination
Multi-party random number generation is a key building-block in many practical protocols. While straightforward to solve when all parties are trusted to behave correctly, the problem becomes much more difficult in the presence of faults. This paper presents RandSolomon, a partially synchronous protocol that allows a system of N processes to produce an unpredictable common random number shared by correct participants. The protocol is optimally resilient, as it allows up to f = ?(N-1)/3? of the processes to behave arbitrarily, ensures deterministic termination and, contrary to prior solutions, does not, at any point, expect faulty processes to be responsive
Synthesis of polylactic acid initiated through biobased antioxidants: Towards intrinsically active food packaging
Polylactide (PLA)-based polymers, functionalized with biobased antioxidants, were synthesized, to develop an intrinsically active, biobased and potentially biodegradable material for food packaging applications. To achieve this result, phenolic antioxidants were exploited as initiators in the ring opening polymerization of l-lactide. The molecular weight, thermal properties and in vitro radical scavenging activity of the polymers obtained were compared with the ones of a PLA Natureworks 4043D, commonly used for ïŹexible food packaging applications. The most promising synthesized polymer, bearing vanillyl alcohol as initiator (PLA-VA), was evaluated for active food packaging applications. Packaging with PLA-VA ïŹlms reduced color and fat oxidation of salami during its shelf life.info:eu-repo/semantics/publishedVersio
Homomorphic Sortition â Single Secret Leader Election for PoS Blockchains
In a single secret leader election protocol (SSLE), one of the system participants is chosen and, unless it decides to reveal itself, no other participant can identify it.
SSLE has a great potential in protecting blockchain consensus protocols against denial of service (DoS) attacks. However, all existing solutions either make strong synchrony assumptions or have expiring registration, meaning that they require elected processes to re-register themselves before they can be re-elected again. This, in turn, prohibits the use of these SSLE protocols to elect leaders in partially-synchronous consensus protocols as there may be long periods of network instability when no new blocks are decided and, thus, no new registrations (or re-registrations) are possible.
In this paper, we propose Homomorphic Sortition -- the first asynchronous SSLE protocol with non-expiring registration, making it the first solution compatible with partially-synchronous leader-based consensus protocols.
Homomorphic Sortition relies on Threshold Fully Homomorphic Encryption (ThFHE) and is tailored to proof-of-stake (PoS) blockchains, with several important optimizations with respect to prior proposals.
In particular, unlike most existing SSLE protocols, it works with arbitrary stake distributions and does not require a user with multiple coins to be registered multiple times. Our protocol is highly parallelizable and can be run completely off-chain after setup.
Some blockchains require a sequence of rounds to have non-repeating leaders. We define a generalization of SSLE, called Secret Leader Permutation (SLP) in which the application can choose how many non-repeating leaders should be output in a sequence of rounds and we show how Homomorphic Sortition also solves this problem
Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
Implementation of High Gas Barrier Laminated Films Based on Cellulose Nanocrystals for Food Flexible Packaging
In this work, three types of cellulose nanocrystals (CNCs) were used: CNCSO3H extracted from wood pulp by sulfuric acid (H2SO4), CNCCOOH extracted from cotton linters by ammonium persulfate (APS) and CNCCOOR obtained by esterification of the previous two CNCCOOH and CNCSO3H. For a comparative assessment of gas barrier performance, plastic films such as PLA, PET, PE, PP, OPP and OPA were selected, coated with the three types of CNCs and finally laminated with a solvent-based polyurethanic adhesive. First, all dispersed CNCs were characterized by apparent hydrodynamic diameter and Z potential by means of dynamic light scattering (DLS) and electrophoretic light scattering (ELS) techniques, respectively, followed by the crystallinity index (XRD), thermogravimetric analysis (TGA) and evaluation of Fourier-transform infrared spectroscopy (FTIR), as well as the charges density. The surface chemistry of coated plastics (CNCs-P) was assessed by the Z potential through the electrokinetic technique (streaming potential method) and the optical contact angle (OCA). Lastly, laminated films (P-CNC-P) were evaluated by gas permeability measurements at 23 °C and 50–80% RH. It is worth noting that improvements between 90% and 100% of oxygen barrier were achieved after the lamination. This paper provides insights on the choice of cellulosic nanomaterials for the design and development of advanced and sustainable food packaging materials
Diffusivity of propolis compounds in Polylactic acid polymer for the development of anti-microbial packaging films
Correspondance: [email protected] audienceA major research gap is the lack of packaging materials that can provide the release of active compounds at rates suitable for a wide range of food packaging applications. For this reason an anti-microbial/antioxidant release system for food packaging applications was realized by incorporation of propolis into Polylactic acid (PLA) film. The composition of the films was modified by adding polyethylene glycol (PEG) and calcium bentonite (CB) to the initial PIA casting solution; dispersed structures in fact open the molecular network and increase migration rates. The presence of the anti-microbial compound is required essentially at the food surface where the microorganisms are numerous and where they are intended to grow. The diffusivity of four polyphenols was measured in water and ethanol as food simulating liquids (FSL) and the concentration of additives at the interface PLA/Food Simulant was calculated using Fickian models. The external mass transfer coefficient at the interface polymer/FSL could be neglected (with Bi number higher than 200). This is due to the low diffusivity values of propolis polyphenols in the PLA matrix (0.03-0.83 x 10-13 m(2)/s) which lead to a predominant internal mass transfer phenomenon compared to the external one in the system PLA/water. The concentration at interface at equilibrium was different for each substance and depended of the thermodynamical parameter K. Such a delivery system for direct contact with liquid aqueous medium would be a very efficient delivery system because some active agents (polyphenols acids) would be released in relevant quantity in the food whereas others (flavonoids) would remain in the polymer to act at the polymer/food interfac