19 research outputs found

    Zirkulierende extrazelluläre Vesikel - die Biomarker der Zukunft?!

    No full text

    Stored platelets alter glycerophospholipid and sphingolipid species, which are differentially transferred to newly released extracellular vesicles

    No full text
    BACKGROUND: Stored platelet concentrates (PLCs) for transfusion develop a platelet storage lesion (PSL), resulting in decreased platelet (PLT) viability and function. The processes leading to PSL have not been described in detail and no data describe molecular changes occurring in all three components of stored PLCs: PLTs, PLC extracellular vesicles (PLC-EVs), and plasma. STUDY DESIGN AND METHODS: Fifty PLCs from healthy individuals were stored under standard blood banking conditions for 5 days. Changes in cholesterol, glycerophospholipid, and sphingolipid species were analyzed in PLTs, PLC-EVs, and plasma by mass spectrometry and metabolic labeling. Immunoblots were performed to compare PLT and PLC-EV protein expression. RESULTS: During 5 days, PLTs transferred glycerophospholipids, cholesterol, and sphingolipids to newly formed PLC-EVs, which increased corresponding lipids by 30%. Stored PLTs significantly increased ceramide (Cer; +53%) and decreased sphingosine-1-phosphate (−53%), shifting sphingolipid metabolism toward Cer. In contrast, plasma accumulated minor sphingolipids. Compared to PLTs, fresh PLC-EVs were enriched in lysophosphatidic acid (60-fold) and during storage showed significant increases in cholesterol, sphingomyelin, dihydrosphingomyelin, plasmalogen, and lysophosphatidylcholine species, as well as accumulation of apolipoproteins A-I, E, and J/clusterin. CONCLUSION: This is the first detailed analysis of lipid species in all PLC components during PLC storage, which might reflect mechanisms active during in vivo PLT senescence. Stored PLTs reduce minor sphingolipids and shift sphingolipid metabolism toward Cer, whereas in the plasma fraction minor sphingolipids increase. The composition of PLC-EVs resembles that of lipid rafts and confirms their role as carriers of bioactive molecules and master regulators in vascular disease

    The diversity of platelet microparticles

    No full text
    PURPOSE OF REVIEW: Platelet microparticles are small extracellular vesicles abundant in blood. The present review will introduce the mechanisms underlying the generation of microparticles, and will describe the diverse microparticle subtypes identified to date. The most appropriate methodologies used to distinguish microparticle subtypes will be also presented. RECENT FINDINGS: Both the megakaryocytes and platelets can generate microparticles. Circulating microparticles originating from megakaryocytes are distinguished from those derived from activated platelets by the presence of CD62P, LAMP-1, and immunoreceptor-based activation motif receptors. Close examination of platelet activation has shed light on a novel mechanism leading to microparticle production. Under physiologic flow, microparticles bud off from long membrane strands formed by activated platelets. Furthermore, mounting evidence supports the notion of microparticle heterogeneity. Platelet microparticles are commonly characterized by the expression of surface platelet antigens and phosphatidylserine. In fact, only a fraction of platelet microparticles harbor phosphatidylserine, and a distinct subset contains respiratory-competent mitochondria. During disease, the microparticle surface may undergo posttranslational modifications such as citrullination, further supporting the concept of microparticle diversity. SUMMARY: An appreciation of the microparticle heterogeneity will support their development as potential biomarkers and may reveal functions unique to each microparticle subtype in health and disease
    corecore