37 research outputs found

    Structure and internal deformation of thrust sheets in the Sawtooth Range, Montana: insights from anisotropy of magnetic susceptibility

    Get PDF
    Geological strain analysis of sedimentary rocks is commonly carried out using clast-based techniques. In the absence of valid strain markers, it can be difficult to identify the presence of an early tectonic fabric development and resulting layer parallel shortening (LPS). In order to identify early LPS, we carried out anisotropy of magnetic susceptibility (AMS) analyses on Mississippian limestones from the Sawtooth Range of Montana. The Sawtooth Range is an arcuate zone of north-trending, closely spaced, west-dipping, imbricate thrust sheets that place Mississippian Madison Group carbonates above Cretaceous shales and sandstones. This structural regime is part of the cordilleran mountain belt of North America, which resulted from accretion of allochthonous terrains to the western edge of the North American continent. Although the region has a general east–west increase in thrust displacement and related brittle deformation, a similar trend in penetrative deformation or the distribution of tectonic fabrics is not observed in the field or in the AMS results. The range of magnetic fabrics identified in each thrust sheet ranges from bedding controlled depositional fabrics to tectonic fabrics at a high angle to bedding

    Assessing vertical axis rotations in large-magnitude extensional settings: A transect across the Death Valley extended terrane, California

    Get PDF
    Models for Neogene crustal deformation in the central Death Valley extended terrane, southeastern California, differ markedly in their estimates of upper crustal extension versus shear translations. Documentation of vertical axis rotations of range-scale crustal blocks (or parts thereof) is critical when attempting to reconstruct this highly extended region. To better define the magnitude, aerial extent, and timing of vertical axis rotation that could mark shear translation of the crust in this area, paleomagnetic data were obtained from Tertiary igneous and remagnetized Paleozoic carbonate rocks along a roughly east-west traverse parallel to about 36°N latitude. Sites were established in ∼7 to 5 Ma volcanic sequences (Greenwater Canyon and Brown's Peak) and the ∼10 Ma Chocolate Sundae Mountain granite in the Greenwater Range, ∼8.5 to 7.5 Ma and 5 to 4 Ma basalts on the east flank of the Black Mountains, the 10.6 Ma Little Chief stock and upper Miocene(?) basalts in the eastern Panamint Mountains, and Paleozoic Pogonip Group carbonate strata in the north central Panamint Mountains. At the site level, most materials yield readily interpretable paleomagnetic data. Group mean directions, after appropriate structural corrections, suggest no major vertical axis rotation of the Greenwater Range (e.g., D = 359°, I = 46°, α_(95) = 8.0°, N = 12 (7 normal (N), 5 reversed (R) polarity sites)), little post-5 Ma rotation of the eastern Black Mountains (e.g., D = 006°, I = 61°, α_(95) = 4.0°, N = 9 N, 6 R sites), and no significant post-10 Ma rotation of the Panamint Range (e.g., D = 181°, I = −51°, α_(95) = 6.5°, N = 9 R sites). In situ data from the Greenwater Canyon volcanic rocks, Chocolate Sundae Mountain granite, Funeral Peak basalt rocks, the Little Chief stock, and Paleozoic carbonate rocks (remagnetized) are consistent with moderate south east-side-down tilting of the separate range blocks during northwest directed extension. The paleomagnetic data reported here suggest that the Panamints shared none of the 7 Ma to recent clockwise rotation of the Black Mountains crystalline core, as proposed in recent models for transtensional development of the central Death Valley extended terrane

    Structure and internal deformation of thrust sheets in the Sawtooth Range, Montana: insights from anisotropy of magnetic susceptibility

    Get PDF
    Geological strain analysis of sedimentary rocks is commonly carried out using clast-based techniques. In the absence of valid strain markers, it can be difficult to identify the presence of an early tectonic fabric development and resulting layer parallel shortening (LPS). In order to identify early LPS, we carried out anisotropy of magnetic susceptibility (AMS) analyses on Mississippian limestones from the Sawtooth Range of Montana. The Sawtooth Range is an arcuate zone of north-trending, closely spaced, west-dipping, imbricate thrust sheets that place Mississippian Madison Group carbonates above Cretaceous shales and sandstones. This structural regime is part of the cordilleran mountain belt of North America, which resulted from accretion of allochthonous terrains to the western edge of the North American continent.Although the region has a general east-west increase in thrust displacement and related brittle deformation, a similar trend in penetrative deformation or the distribution of tectonic fabrics is not observed in the field or in the AMS results. The range of magnetic fabrics identified in each thrust sheet ranges from bedding controlled depositional fabrics to tectonic fabrics at a high angle to bedding

    Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation

    Get PDF
    Two global glaciations occurred during the Neoproterozoic. Snowball Earth theory posits that these were terminated after millions of years of frigidity when initial warming from rising atmospheric CO2 concentrations was amplified by the reduction of ice cover and hence a reduction in planetary albedo. This scenario implies that most of the geological record of ice cover was deposited in a brief period of melt-back. However, deposits in low palaeo-latitudes show evidence of glacial–interglacial cycles. Here we analyse the sedimentology and oxygen and sulphur isotopic signatures of Marinoan Snowball glaciation deposits from Svalbard, in the Norwegian High Arctic. The deposits preserve a record of oscillations in glacier extent and hydrologic conditions under uniformly high atmospheric CO2 concentrations. We use simulations from a coupled three-dimensional ice sheet and atmospheric general circulation model to show that such oscillations can be explained by orbital forcing in the late stages of a Snowball glaciation. The simulations suggest that while atmospheric CO2 concentrations were rising, but not yet at the threshold required for complete melt-back, the ice sheets would have been sensitive to orbital forcing. We conclude that a similar dynamic can potentially explain the complex successions observed at other localities

    The primary headaches: genetics, epigenetics and a behavioural genetic model

    Get PDF
    The primary headaches, migraine with (MA) and without aura (MO) and cluster headache, all carry a substantial genetic liability. Familial hemiplegic migraine (FHM), an autosomal dominant mendelian disorder classified as a subtype of MA, is due to mutations in genes encoding neural channel subunits. MA/MO are considered multifactorial genetic disorders, and FHM has been proposed as a model for migraine aetiology. However, a review of the genetic studies suggests that the FHM genes are not involved in the typical migraines and that FHM should be considered as a syndromic migraine rather than a subtype of MA. Adopting the concept of syndromic migraine could be useful in understanding migraine pathogenesis. We hypothesise that epigenetic mechanisms play an important role in headache pathogenesis. A behavioural model is proposed, whereby the primary headaches are construed as behaviours, not symptoms, evolutionarily conserved for their adaptive value and engendered out of a genetic repertoire by a network of pattern generators present in the brain and signalling homeostatic imbalance. This behavioural model could be incorporated into migraine genetic research

    Magma plumbing systems: a geophysical perspective

    Get PDF
    Over the last few decades, significant advances in using geophysical techniques to image the structure of magma plumbing systems have enabled the identification of zones of melt accumulation, crystal mush development, and magma migration. Combining advanced geophysical observations with petrological and geochemical data has arguably revolutionised our understanding of, and afforded exciting new insights into, the development of entire magma plumbing systems. However, divisions between the scales and physical settings over which these geophysical, petrological, and geochemical methods are applied still remain. To characterise some of these differences and promote the benefits of further integration between these methodologies, we provide a review of geophysical techniques and discuss how they can be utilised to provide a structural context for and place physical limits on the chemical evolution of magma plumbing systems. For example, we examine how Interferometric Synthetic Aperture Radar (InSAR), coupled with Global Positioning System (GPS) and Global Navigation Satellite System (GNSS) data, and seismicity may be used to track magma migration in near real-time. We also discuss how seismic imaging, gravimetry and electromagnetic data can identify contemporary melt zones, magma reservoirs and/or crystal mushes. These techniques complement seismic reflection data and rock magnetic analyses that delimit the structure and emplacement of ancient magma plumbing systems. For each of these techniques, with the addition of full-waveform inversion (FWI), the use of Unmanned Aerial Vehicles (UAVs) and the integration of geophysics with numerical modelling, we discuss potential future directions. We show that approaching problems concerning magma plumbing systems from an integrated petrological, geochemical, and geophysical perspective will undoubtedly yield important scientific advances, providing exciting future opportunities for the volcanological community
    corecore