91 research outputs found

    Kinetic Solar Skin: A Responsive Folding Technique

    Get PDF
    The paper focuses on optimized movements analysed by means of Origami, the Japanese traditional art of paper folding. The study is a way to achieve different deployable shading systems categorized by a series of parameters that describe the strengths and weaknesses of each tessellation. Through the kinetic behaviour of Origami geometries the research compares simple folding diagrams with the purpose to understand the deployment at global scale and thus the potential of kinetic patterns’ morphology for application in adaptive facades. The possibilities of using a responsive folding technique to develop a kinetic surface that can change its configuration are here examined through the variation of parameters that influence kinematics’ form. Moreover, in order to perform the shape change without any external mechanical devices, the use of Shape Memory Alloy (SMA) actuators has been tested

    Shape morphing solar shadings: a review

    Get PDF
    This paper provides an overview of available innovative shape morphing building skins and their design principles. In particular, the proposed review deals with comfort-related issues associated with dynamic solar shading devices, building integration of smart materials, and morphological analyses related to the most recent shape morphing solar skins. In the first part of the paper, an introduction to the typologies of movement in architecture, its concept and application are presented. An explanation of biomimetic principles together with an overview of user's response to dynamic shading devices is also provided. This is followed by the description of the design principles for shape morphing solar shadings with particular focus on energy and comfort aspects, smart materials and biomimetic principles for efficient movements. A review of most recent developments on the topics of comfort, users' response and control of dynamic shading devices, is presented and summarized in a comparison table. The main technical and mechanical properties of the most diffused smart materials (Shape Memory Alloys, Shape Memory Polymers and Shape Memory Hybrids) that can be used for innovative shape morphing solar skins are illustrated in detail and compared. Biomimetic principles for efficient movements complete this part of the work. The principles illustrated in the previous part of this paper are then used to critically analyse the most recent examples of building integrated shape morphing shadings

    Integrative approach for precise genotyping and transcriptomics of a salt tolerant introgression line in rice

    Full text link
    Rice is the most salt sensitive cereal crop and its cultivation is particularly threatened by salt stress. This study reports the development of salt tolerant introgressed lines (ILs) derived from crosses between the salt tolerant indica rice variety FL478, which harbors the Saltol QTL, and the salt-sensitive japonica elite cultivar PL12. Although the introgression of the Saltol QTL has been widely used to improve salinity tolerance, the molecular basis underlying the salinity tolerance conferred by Saltol remains poorly understood. Equally, the impact of introgressions from a Saltol donor parent on the global transcriptome of ILs is largely unknown. Here, genotyping-by-sequencing (GBS) and Kompetitive allele specific PCR (KASP) genotyping, in combination with step-wise phenotypic selection in hydroponic culture, were used for the identification of salt-tolerant ILs. Transcriptome-based genotyping allowed the fine mapping of indica genetic introgressions in the best performing IL line (IL22). A total of 1,595 genes were identified in indica regions in IL22, which mainly located in large introgressions at Chromosomes 1 and 3. In addition to OsHKT1;5, an important number of genes potentially contributing to salt stress tolerance were identified in indica segments of IL22. Comparative transcript profiling also revealed important transcriptional reprograming in IL22 plants both under non-stress and salt-stress conditions, indicating an impact on the transcriptome of the japonica background by the indica introgressed genes and vice versa. Interactions among indica and japonica genes would provide novel regulatory networks contributing to salt stress tolerance in introgression rice lines

    Management of transient loss of consciousness of suspected syncopal cause, after the initial evaluation in the Emergency Department

    Get PDF
    The recommendations enclosed in the present document have been developed by a group of experts appointed by the Gruppo Multidisciplinare per lo Studio della Sincope (Multidisciplinary Group for the Study of Syncope; GIMSI) and Academy of Emergency Medicine and Care (AcEMC). The aim is to define the diagnostic pathway and the management of patients referred to the Emergency Department (ED) for transient loss of consciousness of suspected syncopal cause, which is still unexplained after the initial evaluation. The risk stratification enables the physician to admit, discharge or monitor shortly the patient in the intensive short-stay Syncope Observation Unit (SOU). There are three risk levels of life-threatening events or serious complications (low, moderate, high). Low risk patients can be discharged, while high risk ones should be monitored and treated properly in case of worsening. Moderate risk patients should undergo clinical and instrumental monitoring in SOU, inside the ED. In all these three cases, patients can be subsequently referred to the Syncope Unit for further diagnostic investigations

    Integrative approach for precise genotyping and transcriptomics of a salt tolerant introgression line in rice

    Get PDF
    Trabajo presentado al 18th International Symposium on Rice Functional Genomics (ISRFG), celebrado en Barcelona del 3 al 5 de noviembre de 2021.Peer reviewe

    Data_Sheet_2_Integrative Approach for Precise Genotyping and Transcriptomics of Salt Tolerant Introgression Rice Lines.docx

    Get PDF
    3 pages. -- Supplementary Methods: Transcriptome analysis by RNA-Seq and identification of introgressed indica regionsRice is the most salt sensitive cereal crop and its cultivation is particularly threatened by salt stress, which is currently worsened due to climate change. This study reports the development of salt tolerant introgression lines (ILs) derived from crosses between the salt tolerant indica rice variety FL478, which harbors the Saltol quantitative trait loci (QTL), and the salt-sensitive japonica elite cultivar OLESA. Genotyping-by-sequencing (GBS) and Kompetitive allele specific PCR (KASPar) genotyping, in combination with step-wise phenotypic selection in hydroponic culture, were used for the identification of salt-tolerant ILs. Transcriptome-based genotyping allowed the fine mapping of indica genetic introgressions in the best performing IL (IL22). A total of 1,595 genes were identified in indica regions of IL22, which mainly located in large introgressions at Chromosomes 1 and 3. In addition to OsHKT1;5, an important number of genes were identified in the introgressed indica segments of IL22 whose expression was confirmed [e.g., genes involved in ion transport, callose synthesis, transcriptional regulation of gene expression, hormone signaling and reactive oxygen species (ROS) accumulation]. These genes might well contribute to salt stress tolerance in IL22 plants. Furthermore, comparative transcript profiling revealed that indica introgressions caused important alterations in the background gene expression of IL22 plants (japonica cultivar) compared with its salt-sensitive parent, both under non-stress and salt-stress conditions. In response to salt treatment, only 8.6% of the salt-responsive genes were found to be commonly up- or down-regulated in IL22 and OLESA plants, supporting massive transcriptional reprogramming of gene expression caused by indica introgressions into the recipient genome. Interactions among indica and japonica genes might provide novel regulatory networks contributing to salt stress tolerance in introgression rice lines. Collectively, this study illustrates the usefulness of transcriptomics in the characterization of new rice lines obtained in breeding programs in rice.Peer reviewe

    Data_Sheet_1_Integrative Approach for Precise Genotyping and Transcriptomics of Salt Tolerant Introgression Rice Lines.PDF

    Get PDF
    13 pages. -- Supplementary Figure 1. Breeding scheme used in the marked-assisted backcross introgression of the Saltol QTL from FL478 (indica) into the background of the rice variety OLESA (temperate japonica rice). -- Supplementary Figure 2. Polymorphism obtained with the SKC10 SSR marker visualized by agarose gel analysis. (A) Saltol QTL region showing the SKC10 SSR marker and relevant salt-related genes positions. (B) PCR products obtained from the Saltol donor (FL478), the recurrent (OLESA) parent and 4 representative introgression lines derived from FL478 x OLESA crosses (BC2F1). C-, negative control, He, heterozygous, Ho, homozygous. Primers are indicated in Supplementary Table 2. -- Supplementary Figure 3. Graphical representation of the genotypes of the Saltol-introgressed rice lines (BC3F3). Genotyping was carried out by KASPar analysis. SNPs are indicated in columns according to their chromosomal location (in mega base-pairs, Mb). Introgression lines (IL1 to IL31) are clustered in four groups (I to IV) depending on the BC3F1 parent from which they derive. The Saltol QTL location (and length) is indicated in the upper part. Homozygous donor (FL478) and recurrent (OLESA) alleles are depicted in blue and white, respectively. The KASPar markers used in this study are listed in Supplementary Tables 1 and 2. -- Supplementary Figure 4. SES score of parental lines (FL478, OLESA) hydroponically grown in modified Yoshida solution containing different NaCl concentrations (60 mM, 80 mM and 100 mM) for 14 days. Box plots show the distribution of SES scores in each line and condition (15 plants/genotype each experiment; T-test, * P < 0.05). Values above each box indicate the mean SES score . -- Supplementary Figure 5. Characterization of salt tolerant introgression lines. (A) Standard evaluation system (SES) scores of visual salt injury of the 30 ILs. Evaluation was performed after 14 days of salt treatment (80 mM NaCl). SES scores are shown as the percentage of plants at each score value. 1, highly tolerant; 3, tolerant; 5, moderately tolerant; 7, sensitive; 9, highly sensitive. ILs are clustered in four groups (I to IV) depending on the BC3F1 parent used. ILs were evaluated in successive rounds, with 5 plants and 10 plants in control and salt conditions respectively in each experiment, and most salt-sensitive ILs were discarded in the following assays. A total of six independent experiments were carried out with the most salt-tolerant ILs. (B) Representative images of IL22 and IL13 plants and parental lines in control and salt conditions after 14 days of treatment. -- Supplementary Figure 6. Plant growth of parental lines (FL478, OLESA) and IL22 plants hydroponically grown in modified Yoshida solution containing 80 mM NaCl. Control plants were not supplemented with NaCl. The leaf number of each genotype at different times of salt treatment is indicated. At least 6 plants per genotype and condition were assayed. -- Supplementary Figure 7. Samples analysed by RNASeq, and comparisons of data sets from each genotype (IL22, OLESA) and condition (control, salt-treated). -- Supplementary Figure 8. Singular enrichment analysis of introgressed indica genes (chromosome 1, blocks 1 and 2, and chromosome 3) using AgriGO (Tian et al., 2017). For a full list of gene IDs, see Supplementary Table 5. -- Supplementary Figure 9. Singular enrichment analysis of japonica genes up-regulated in IL22 plants at 24 h of salt treatment (80 mM NaCl) using AgriGO (Tian et al., 2017). For a full list of gene IDs, see Supplementary Table 8. -- Supplementary Figure 10. Singular enrichment analysis of japonica genes up-regulated in OLESA plants at 24 h of salt treatment (80 mM NaCl) using AgriGO (Tian et al., 2017). For a full list of gene IDs, see Supplementary Table 8. -- Supplementary Figure 11. Singular enrichment analysis of japonica genes down-regulated in IL22 plants at 24 h of salt treatment (80 mM NaCl) using AgriGO (Tian et al., 2017). For a full list of gene IDs, see Supplementary Table 8. -- Supplementary Figure 12. Singular enrichment analysis of japonica genes down-regulated in OLESA plants at 24 h of salt treatment (80 mM NaCl) using AgriGO (Tian et al., 2017). For a full list of gene IDs, see Supplementary Table 8. -- Supplementary Figure 13. Mapman analysis of japonica genes up- and down-regulated in IL22 and OLESA plants at 24 h of salt treatment (80 mM NaCl). Regulation overview, stress and transport schemes are shown. Color scale (yellow to blue) represents the log2 fold change of salt vs. control conditions.Rice is the most salt sensitive cereal crop and its cultivation is particularly threatened by salt stress, which is currently worsened due to climate change. This study reports the development of salt tolerant introgression lines (ILs) derived from crosses between the salt tolerant indica rice variety FL478, which harbors the Saltol quantitative trait loci (QTL), and the salt-sensitive japonica elite cultivar OLESA. Genotyping-by-sequencing (GBS) and Kompetitive allele specific PCR (KASPar) genotyping, in combination with step-wise phenotypic selection in hydroponic culture, were used for the identification of salt-tolerant ILs. Transcriptome-based genotyping allowed the fine mapping of indica genetic introgressions in the best performing IL (IL22). A total of 1,595 genes were identified in indica regions of IL22, which mainly located in large introgressions at Chromosomes 1 and 3. In addition to OsHKT1;5, an important number of genes were identified in the introgressed indica segments of IL22 whose expression was confirmed [e.g., genes involved in ion transport, callose synthesis, transcriptional regulation of gene expression, hormone signaling and reactive oxygen species (ROS) accumulation]. These genes might well contribute to salt stress tolerance in IL22 plants. Furthermore, comparative transcript profiling revealed that indica introgressions caused important alterations in the background gene expression of IL22 plants (japonica cultivar) compared with its salt-sensitive parent, both under non-stress and salt-stress conditions. In response to salt treatment, only 8.6% of the salt-responsive genes were found to be commonly up- or down-regulated in IL22 and OLESA plants, supporting massive transcriptional reprogramming of gene expression caused by indica introgressions into the recipient genome. Interactions among indica and japonica genes might provide novel regulatory networks contributing to salt stress tolerance in introgression rice lines. Collectively, this study illustrates the usefulness of transcriptomics in the characterization of new rice lines obtained in breeding programs in rice.Peer reviewe

    Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients

    Get PDF
    IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods. MethodsWe prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions. ResultsOf 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models' prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR. ConclusionsIn this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
    corecore