1,298 research outputs found

    The Goddard Project

    Get PDF
    The goal of this project was to design and build a robotic dog modeled after Goddard from the 2001 television series, The Adventures of Jimmy Neutron Boy Genius. Sheet metal was used for the body of the robot in order to keep the frame lightweight. Goddard travels on two wheels powered by electric motors and two caster wheels. The robot utilizes a Raspberry Pi as its master device and an Arduino Uno in order to control the robot. Essentially, Goddard acts and behaves like an ordinary dog from barking, to moving around, to being a great companion and friend. In addition, Goddard also has access to the extensive knowledge of the Wolfram Alpha database and can be controlled over a wireless internet connection using a keyboard or voice controls. This project was successfully presented and demonstrated at the 2014 University of New Hampshire Undergraduate Research Conference and received an Award of Excellence

    Flavor in Minimal Conformal Technicolor

    Full text link
    We construct a complete, realistic, and natural UV completion of minimal conformal technicolor that explains the origin of quark and lepton masses and mixing angles. As in "bosonic technicolor", we embed conformal technicolor in a supersymmetric theory, with supersymmetry broken at a high scale. The exchange of heavy scalar doublets generates higher-dimension interactions between technifermions and quarks and leptons that give rise to quark and lepton masses at the TeV scale. Obtaining a sufficiently large top quark mass requires strong dynamics at the supersymmetry breaking scale in both the top and technicolor sectors. This is natural if the theory above the supersymmetry breaking also has strong conformal dynamics. We present two models in which the strong top dynamics is realized in different ways. In both models, constraints from flavor-changing effects can be easily satisfied. The effective theory below the supersymmetry breaking scale is minimal conformal technicolor with an additional light technicolor gaugino. We argue that this light gaugino is a general consequence of conformal technicolor embedded into a supersymmetric theory. If the gaugino has mass below the TeV scale it will give rise to an additional pseudo Nambu-Goldstone boson that is observable at the LHC.Comment: 37 pages; references adde

    Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction

    Get PDF
    We present evidence for the flavor-changing neutral current decay BK+B\to K^*\ell^+\ell^- and a measurement of the branching fraction for the related process BK+B\to K\ell^+\ell^-, where +\ell^+\ell^- is either an e+ee^+e^- or μ+μ\mu^+\mu^- pair. These decays are highly suppressed in the Standard Model, and they are sensitive to contributions from new particles in the intermediate state. The data sample comprises 123×106123\times 10^6 Υ(4S)BBˉ\Upsilon(4S)\to B\bar{B} decays collected with the Babar detector at the PEP-II e+ee^+e^- storage ring. Averaging over K()K^{(*)} isospin and lepton flavor, we obtain the branching fractions B(BK+)=(0.650.13+0.14±0.04)×106{\mathcal B}(B\to K\ell^+\ell^-)=(0.65^{+0.14}_{-0.13}\pm 0.04)\times 10^{-6} and B(BK+)=(0.880.29+0.33±0.10)×106{\mathcal B}(B\to K^*\ell^+\ell^-)=(0.88^{+0.33}_{-0.29}\pm 0.10)\times 10^{-6}, where the uncertainties are statistical and systematic, respectively. The significance of the BK+B\to K\ell^+\ell^- signal is over 8σ8\sigma, while for BK+B\to K^*\ell^+\ell^- it is 3.3σ3.3\sigma.Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table

    Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays

    Get PDF
    We present measurements of the branching fractions for the three-body decays B0 -> D(*)-/+ K0 pi^+/-andtheirresonantsubmodes and their resonant submodes B0 -> D(*)-/+ K*+/- using a sample of approximately 88 million BBbar pairs collected by the BABAR detector at the PEP-II asymmetric energy storage ring. We measure: B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4} B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4} From these measurements we determine the fractions of resonant events to be : f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) = 0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let

    Precision tau physics

    Get PDF
    Precise measurements of the lepton properties provide stringent tests of the Standard Model and accurate determinations of its parameters. We overview the present status of tau physics, highlighting the most recent developments, and discuss the prospects for future improvements. The leptonic decays of the tau lepton probe the structure of the weak currents and the universality of their couplings to the W boson. The universality of the leptonic Z couplings has also been tested through Z -> l(+)l(-) decays. The hadronic tau decay modes constitute an ideal tool for studying low-energy effects of the strong interaction in very clean conditions. Accurate determinations of the QCD coupling and the Cabibbo mixing V-us have been obtained with tau data. The large mass of the tau opens the possibility to study many kinematically-allowed exclusive decay modes and extract relevant dynamical information. Violations of flavour and CP conservation laws can also be searched for with tau decays. Related subjects such as μdecays, the electron and muon anomalous magnetic moments, neutrino mixing and B-meson decays into tau leptons are briefly covered. Being one the fermions most strongly coupled to the scalar sector, the tau lepton is playing now a very important role at the LHC as a tool to test the Higgs properties and search for new physics at higher scales

    Measurement of the Branching Fraction for B- --> D0 K*-

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid Communications

    Different hierarchical reconfigurations in the brain by psilocybin and escitalopram for depression

    Get PDF
    Effective interventions for neuropsychiatric disorders may work by rebalancing the brain’s functional hierarchical organization. Here we directly investigated the effects of two different serotonergic pharmacological interventions on functional brain hierarchy in major depressive disorder in a two-arm double-blind phase II randomized controlled trial comparing psilocybin therapy (22 patients) with escitalopram (20 patients). Patients with major depressive disorder received either 2 × 25 mg of oral psilocybin, three weeks apart, plus six weeks of daily placebo (‘psilocybin arm’) or 2 × 1 mg of oral psilocybin, three weeks apart, plus six weeks of daily escitalopram (10–20 mg; ‘escitalopram arm’). Resting-state functional magnetic resonance imaging scans were acquired at baseline and three weeks after the second psilocybin dose (NCT03429075). The brain mechanisms were captured by generative effective connectivity, estimated from whole-brain modeling of resting state for each session and patient. Hierarchy was determined for each of these sessions using measures of directedness and trophic levels on the effective connectivity, which captures cycle structure, stability and percolation. The results showed that the two pharmacological interventions created significantly different hierarchical reconfigurations of whole-brain dynamics with differential, opposite statistical effect responses. Furthermore, the use of machine learning revealed significant differential reorganization of brain hierarchy before and after the two treatments. Machine learning was also able to predict treatment response with an accuracy of 0.85 ± 0.04. Overall, the results demonstrate that psilocybin and escitalopram work in different ways for rebalancing brain dynamics in depression. This suggests the hypothesis that neuropsychiatric disorders could be closely linked to the breakdown in regions orchestrating brain dynamics from the top of the hierarchy
    corecore