PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/128745

Please be advised that this information was generated on 2017-12-05 and may be subject to change.

Measurements of Branching Fractions and Dalitz Distributions for $B^{0} \rightarrow D^{(*) \pm} \boldsymbol{K}^{\mathbf{0}} \boldsymbol{\pi}^{\mp}$ Decays

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges-Pous, ${ }^{2}$ A. Palano, ${ }^{3}$ A. Pompili, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu,,${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ A. W. Borgland, ${ }^{6}$ A. B. Breon, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ C. T. Day, ${ }^{6}$ M. S. Gill, ${ }^{6}$ A. V. Gritsan, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ R. W. Kadel, ${ }^{6}$ J. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ M. Fritsch, ${ }^{8}$ K. Goetzen, ${ }^{8}$ T. Held, ${ }^{8}$ H. Koch,,${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ N. Chevalier, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ M. P. Kelly, ${ }^{9}$ T. E. Latham, ${ }^{9}$ F. F. Wilson, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ C. Hearty, ${ }^{10}$ N.S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ D. Thiessen, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ A. E. Blinov, ${ }^{12}$ V. E. Blinov, ${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ V. N. Ivanchenko, ${ }^{12}$ E. A. Kravchenko, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ A. N. Yushkov, ${ }^{12}$ D. Best, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ M. Mandelkern, ${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ C. Buchanan, ${ }^{14}$ B. L. Hartfiel, ${ }^{14}$ A. J. R. Weinstein, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ D. del Re, ${ }^{16}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ D. B. MacFarlane, ${ }^{16}$ H. P. Paar, ${ }^{16}$ Sh. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ A. Lu, ${ }^{17}$ M. A. Mazur, ${ }^{17}$ J. D. Richman, ${ }^{17}$ W. Verkerke, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden,,18 P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen,,${ }^{19}$ G. P. Dubois-Felsmann, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ D. G. Hitlin,,${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ S. Yang, ${ }^{19}$ S. Jayatilleke, ${ }^{20}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ P. Rankin, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ J. Zhang, ${ }^{21}$ L. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ J. L. Harton, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ Q. Zeng, ${ }^{22}$ B. Spaan, ${ }^{23}$ D. Altenburg, ${ }^{24}$ T. Brandt, ${ }^{24}$ J. Brose, ${ }^{24}$ M. Dickopp, ${ }^{24}$ E. Feltresi, ${ }^{24}$ A. Hauke, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ R. Nogowski, ${ }^{24}$ S. Otto, ${ }^{24}$ A. Petzold, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier, ${ }^{25}$ S. Schrenk, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ G. Vasileiadis, ${ }^{25}$ M. Verderi, ${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ V. Azzolini, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ L. Piemontese, ${ }^{27}$ A. Sarti, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28}$ M. Piccolo, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ G. Crosetti, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ S. Bailey, ${ }^{30}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ E. Won, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ U. Langenegger, ${ }^{31}$ J. Marks, ${ }^{31}$ U. Uwer, ${ }^{31}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ J. R. Gaillard, ${ }^{32}$ G. W. Morton, ${ }^{32}$ J. A. Nash, ${ }^{32}$ M. B. Nikolich, ${ }^{32}$ G. P. Taylor, ${ }^{32}$ M. J. Charles, ${ }^{33}$ G. J. Grenier, ${ }^{33}$ U. Mallik, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ J. Lamsa, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ J. Yi, ${ }^{34}$ N. Arnaud, ${ }^{35}$ M. Davier, ${ }^{35}$ X. Giroux, ${ }^{35}$ G. Grosdidier, ${ }^{35}$ A. Höcker, ${ }^{35}$ F. Le Diberder, ${ }^{35}$ V. Lepeltier, ${ }^{35}$ A. M. Lutz, ${ }^{35}$ T. C. Petersen, ${ }^{35}$ S. Plaszczynski, ${ }^{35}$ M. H. Schune, ${ }^{35}$ G. Wormser, ${ }^{35}$ C. H. Cheng, ${ }^{36}$ D. J. Lange, ${ }^{36}$ M. C. Simani, ${ }^{36}$ D. M. Wright, ${ }^{36}$ A. J. Bevan, ${ }^{37}$ C. A. Chavez, ${ }^{37}$ J. P. Coleman, ${ }^{37}$ I. J. Forster, ${ }^{37}$ J. R. Fry, ${ }^{37}$ E. Gabathuler, ${ }^{37}$ R. Gamet, ${ }^{37}$ D. E. Hutchcroft, ${ }^{37}$ R. J. Parry, ${ }^{37}$ D. J. Payne, ${ }^{37}$ C. Touramanis, ${ }^{37}$ C. M. Cormack, ${ }^{38}$ F. Di Lodovico, ${ }^{38}$ C. L. Brown, ${ }^{39}$ G. Cowan, ${ }^{39}$ R. L. Flack, ${ }^{39}$ H. U. Flaecher, ${ }^{39}$ M. G. Green, ${ }^{39}$ P. S. Jackson, ${ }^{39}$ T. R. McMahon, ${ }^{39}$ S. Ricciardi, ${ }^{39}$ F. Salvatore, ${ }^{39}$ M. A. Winter, ${ }^{39}$ D. Brown, ${ }^{40}$ C. L. Davis, ${ }^{40}$ J. Allison, ${ }^{41}$ N. R. Barlow, ${ }^{41}$ R. J. Barlow, ${ }^{41}$ M. C. Hodgkinson, ${ }^{41}$ G. D. Lafferty, ${ }^{41}$ J. C. Williams, ${ }^{41}$ C. Chen, ${ }^{42}$ A. Farbin, ${ }^{42}$ W. D. Hulsbergen, ${ }^{42}$ A. Jawahery, ${ }^{42}$ D. Kovalskyi, ${ }^{42}$ C. K. Lae, ${ }^{42}$ V. Lillard, ${ }^{42}$ D. A. Roberts, ${ }^{42}$ G. Blaylock, ${ }^{43}$ C. Dallapiccola, ${ }^{43}$ S. S. Hertzbach, ${ }^{43}$ R. Kofler, ${ }^{43}$ V. B. Koptchev, ${ }^{43}$ T. B. Moore, ${ }^{43}$ S. Saremi, ${ }^{43}$ H. Staengle, ${ }^{43}$ S. Willocq, ${ }^{43}$ R. Cowan, ${ }^{44}$ K. Koeneke, ${ }^{44}$ G. Sciolla, ${ }^{44}$ S. J. Sekula, ${ }^{44}$ F. Taylor, ${ }^{44}$ R. K. Yamamoto, ${ }^{44}$ D. J. J. Mangeol, ${ }^{45}$ P. M. Patel, ${ }^{45}$ S. H. Robertson, ${ }^{45}$ A. Lazzaro, ${ }^{46}$ V. Lombardo, ${ }^{46}$ F. Palombo, ${ }^{46}$ J. M. Bauer, ${ }^{47}$ L. Cremaldi, ${ }^{47}$ V. Eschenburg, ${ }^{47}$ R. Godang, ${ }^{47}$ R. Kroeger, ${ }^{47}$ J. Reidy, ${ }^{47}$ D. A. Sanders, ${ }^{47}$ D. J. Summers, ${ }^{47}$ H. W. Zhao, ${ }^{47}$ S. Brunet, ${ }^{48}$ D. Côté,,${ }^{48}$ P. Taras, ${ }^{48}$ H. Nicholson, ${ }^{49}$ N. Cavallo, ${ }^{50, *}$ F. Fabozzi, ${ }^{50, *}$ C. Gatto, ${ }^{50}$ L. Lista, ${ }^{50}$ D. Monorchio, ${ }^{50}$ P. Paolucci, ${ }^{50}$ D. Piccolo, ${ }^{50}$ C. Sciacca, ${ }^{50}$ M. Baak, ${ }^{51}$ H. Bulten, ${ }^{51}$ G. Raven, ${ }^{51}$ H. L. Snoek, ${ }^{51}$ L. Wilden,,${ }^{51}$ C. P. Jessop, ${ }^{52}$ J. M. LoSecco, ${ }^{52}$ T. Allmendinger, ${ }^{53}$ K. K. Gan, ${ }^{53}$ K. Honscheid, ${ }^{53}$ D. Hufnagel, ${ }^{53}$ H. Kagan, ${ }^{53}$ R. Kass, ${ }^{53}$ T. Pulliam, ${ }^{53}$ A. M. Rahimi, ${ }^{53}$ R. Ter-Antonyan, ${ }^{53}$ Q. K. Wong, ${ }^{53}$ J. Brau, ${ }^{54}$ R. Frey, ${ }^{54}$ O. Igonkina, ${ }^{54}$ M. Lu, ${ }^{54}$ C. T. Potter, ${ }^{54}$ N. B. Sinev, ${ }^{54}$ D. Strom, ${ }^{54}$ E. Torrence, ${ }^{54}$ F. Colecchia, ${ }^{55}$ A. Dorigo, ${ }^{55}$ F. Galeazzi, ${ }^{55}$ M. Margoni, ${ }^{55}$ M. Morandin, ${ }^{55}$ M. Posocco, ${ }^{55}$ M. Rotondo, ${ }^{55}$
F. Simonetto, ${ }^{55}$ R. Stroili, ${ }^{55}$ C. Voci, ${ }^{55}$ M. Benayoun, ${ }^{56}$ H. Briand, ${ }^{56}$ J. Chauveau, ${ }^{56}$ P. David, ${ }^{56} \mathrm{Ch}$. de la Vaissière, ${ }^{56}$ L. Del Buono, ${ }^{56}$ O. Hamon, ${ }^{56}$ M. J. J. John, ${ }^{56}$ Ph. Leruste, ${ }^{56}$ J. Malcles, ${ }^{56}$ J. Ocariz, ${ }^{56}$ L. Roos, ${ }^{56}$ G. Therin, ${ }^{56}$ P. K. Behera, ${ }^{57}$ L. Gladney,,${ }^{57}$ Q. H. Guo,,${ }^{57}$ J. Panetta, ${ }^{57}$ M. Biasini, ${ }^{58}$ R. Covarelli, ${ }^{58}$ M. Pioppi,,${ }^{58}$ C. Angelini, ${ }^{59}$ G. Batignani, ${ }^{59}$ S. Bettarini, ${ }^{59}$ M. Bondioli, ${ }^{59}$ F. Bucci, ${ }^{59}$ G. Calderini, ${ }^{59}$ M. Carpinelli, ${ }^{59}$ F. Forti, ${ }^{59}$ M. A. Giorgi, ${ }^{59}$ A. Lusiani, ${ }^{59}$ G. Marchiori, ${ }^{59}$ M. Morganti, ${ }^{59}$ N. Neri, ${ }^{59}$ E. Paoloni, ${ }^{59}$ M. Rama, ${ }^{59}$ G. Rizzo, ${ }^{59}$ G. Simi, ${ }^{59}$ J. Walsh, ${ }^{59}$ M. Haire, ${ }^{60}$ D. Judd, ${ }^{60}$ K. Paick, ${ }^{60}$ D. E. Wagoner, ${ }^{60}$ N. Danielson, ${ }^{61}$ P. Elmer,,${ }^{61}$ Y.P. Lau, ${ }^{61}$ C. Lu, ${ }^{61}$ V. Miftakov, ${ }^{61}$ J. Olsen, ${ }^{61}$ A. J. S. Smith, ${ }^{61}$ A. V. Telnov, ${ }^{61}$ F. Bellini, ${ }^{62}$ G. Cavoto, ${ }^{61,62}$ R. Faccini, ${ }^{62}$ F. Ferrarotto, ${ }^{62}$ F. Ferroni, ${ }^{62}$ M. Gaspero, ${ }^{62}$ L. Li Gioi, ${ }^{62}$ M. A. Mazzoni, ${ }^{62}$ S. Morganti, ${ }^{62}$ M. Pierini, ${ }^{62}$ G. Piredda, ${ }^{62}$ F. Safai Tehrani, ${ }^{62}$ C. Voena, ${ }^{62}$ S. Christ, ${ }^{63}$ G. Wagner, ${ }^{63}$ R. Waldi, ${ }^{63}$ T. Adye, ${ }^{64}$ N. De Groot, ${ }^{64}$ B. Franek, ${ }^{64}$ N. I. Geddes, ${ }^{64}$ G. P. Gopal,,${ }^{64}$ E. O. Olaiya, ${ }^{64}$ R. Aleksan, ${ }^{65}$ S. Emery, ${ }^{65}$ A. Gaidot, ${ }^{65}$ S. F. Ganzhur, ${ }^{65}$ P.-F. Giraud, ${ }^{65}$ G. Hamel de Monchenault, ${ }^{65}$ W. Kozanecki, ${ }^{65}$ M. Legendre, ${ }^{65}$ G. W. London, ${ }^{65}$ B. Mayer, ${ }^{65}$ G. Schott,,${ }^{65}$ G. Vasseur, ${ }^{65}$ Ch. Yèche, ${ }^{65}$ M. Zito, ${ }^{65}$ M. V. Purohit, ${ }^{66}$ A. W. Weidemann, ${ }^{66}$ J. R. Wilson, ${ }^{66}$ F. X. Yumiceva, ${ }^{66}$ T. Abe, ${ }^{67}$ D. Aston, ${ }^{67}$ R. Bartoldus, ${ }^{67}$ N. Berger, ${ }^{67}$ A. M. Boyarski, ${ }^{67}$ O.L. Buchmueller, ${ }^{67}$ R. Claus, ${ }^{67}$ M.R. Convery, ${ }^{67}$ M. Cristinziani, ${ }^{67}$ G. De Nardo, ${ }^{67}$ J. C. Dingfelder,,${ }^{67}$ D. Dong, ${ }^{67}$ J. Dorfan, ${ }^{67}$ D. Dujmic, ${ }^{67}$ W. Dunwoodie, ${ }^{67}$ S. Fan, ${ }^{67}$ R. C. Field, ${ }^{67}$ T. Glanzman, ${ }^{67}$ S. J. Gowdy, ${ }^{67}$ T. Hadig, ${ }^{67}$ V. Halyo, ${ }^{67}$ C. Hast, ${ }^{67}$ T. Hryn'ova, ${ }^{67}$ W. R. Innes, ${ }^{67}$ M. H. Kelsey, ${ }^{67}$ P. Kim, ${ }^{67}$ M. L. Kocian, ${ }^{67}$ D. W. G. S. Leith, ${ }^{67}$ J. Libby, ${ }^{67}$ S. Luitz, ${ }^{67}$ V. Luth,,${ }^{67}$ H.L. Lynch,,${ }^{67}$ H. Marsiske, ${ }^{67}$ R. Messner, ${ }^{67}$ D. R. Muller, ${ }^{67}$ C. P. O'Grady, ${ }^{67}$ V.E. Ozcan, ${ }^{67}$ A. Perazzo, ${ }^{67}$ M. Perl, ${ }^{67}$ B. N. Ratcliff, ${ }^{67}$ A. Roodman, ${ }^{67}$ A. A. Salnikov, ${ }^{67}$ R. H. Schindler, ${ }^{67}$ J. Schwiening, ${ }^{67}$ A. Snyder, ${ }^{67}$ A. Soha, ${ }^{67}$ J. Stelzer, ${ }^{67}$ J. Strube, ${ }^{54,67}$ D. Su, ${ }^{67}$ M. K. Sullivan, ${ }^{67}$ J. Va'vra, ${ }^{67}$ S. R. Wagner, ${ }^{67}$ M. Weaver, ${ }^{67}$ W. J. Wisniewski, ${ }^{67}$ M. Wittgen, ${ }^{67}$ D. H. Wright, ${ }^{67}$ A. K. Yarritu, ${ }^{67}$ C. C. Young, ${ }^{67}$ P. R. Burchat, ${ }^{68}$ A. J. Edwards, ${ }^{68}$ S. A. Majewski, ${ }^{68}$ B. A. Petersen, ${ }^{68}$ C. Roat, ${ }^{68}$ M. Ahmed, ${ }^{69}$ S. Ahmed, ${ }^{69}$ M. S. Alam, ${ }^{69}$ J. A. Ernst,${ }^{69}$ M. A. Saeed, ${ }^{69}$ M. Saleem, ${ }^{69}$ F. R. Wappler, ${ }^{69}$ W. Bugg, ${ }^{70}$ M. Krishnamurthy, ${ }^{70}$ S. M. Spanier, ${ }^{70}$ R. Eckmann, ${ }^{71}$ H. Kim, ${ }^{71}$ J. L. Ritchie, ${ }^{71}$ A. Satpathy, ${ }^{71}$ R. F. Schwitters, ${ }^{71}$ J. M. Izen, ${ }^{72}$ I. Kitayama, ${ }^{72}$ X. C. Lou, ${ }^{72}$ S. Ye, ${ }^{72}$ F. Bianchi, ${ }^{73}$ M. Bona, ${ }^{73}$ F. Gallo, ${ }^{73}$ D. Gamba, ${ }^{73}$ L. Bosisio, ${ }^{74}$ C. Cartaro, ${ }^{74}$ F. Cossutti, ${ }^{74}$ G. Della Ricca, ${ }^{74}$ S. Dittongo, ${ }^{74}$ S. Grancagnolo, ${ }^{74}$ L. Lanceri,,${ }^{74}$ P. Poropat,,${ }^{74, \dagger^{7}}$ L. Vitale, ${ }^{74}$ G. Vuagnin,${ }^{74}$ F. Martinez-Vidal,,${ }^{2,75}$ R. S. Panvini, ${ }^{76}$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ C. M. Brown, ${ }^{77}$ D. Fortin, ${ }^{77}$ P.D. Jackson, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ J. J. Back, ${ }^{78}$ P. F. Harrison, ${ }^{78}$ G. B. Mohanty,,${ }^{78}$ H.R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ B. Cheng, ${ }^{79}$ S. Dasu, ${ }^{79}$ M. Datta, ${ }^{79}$ A. M. Eichenbaum,,${ }^{79}$ K. T. Flood, ${ }^{79}$ M. Graham, ${ }^{79}$ J. J. Hollar, ${ }^{79}$ J. R. Johnson, ${ }^{79}$ P.E. Kutter, ${ }^{79}$ H. Li, ${ }^{79}$ R. Liu, ${ }^{79}$ A. Mihalyi, ${ }^{79}$ Y. Pan, ${ }^{79}$ R. Prepost, ${ }^{79}$ P. Tan, ${ }^{79}$ J. H. von Wimmersperg-Toeller, ${ }^{79}$ J. Wu, ${ }^{79}$ S.L. Wu, ${ }^{79}$ Z. Yu, ${ }^{79}$ M. G. Greene, ${ }^{80}$ and H. Neal ${ }^{80}$
(BABAR Collaboration)

${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Universitad Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
${ }^{3}$ Dipartimento di Fisica and INFN, Università di Bari, I-70126 Bari, Italy
${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{5}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{8}$ Institut für Experimentalphysik 1, Ruhr Universität Bochum, D-44780 Bochum, Germany
${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{10}$ University of British Columbia, Vancouver, BC, Canada V6T 1Z1
${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{18}$ Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064, USA
${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{23}$ Institut fur Physik, Universität Dortmund, D-44221 Dortmund, Germany
${ }^{24}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01062 Dresden, Germany
${ }^{25}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France

${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{27}$ Dipartimento di Fisica and INFN, Università di Ferrara, I-44100 Ferrara, Italy
${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{29}$ Dipartimento di Fisica and INFN, Università di Genova, I-16146 Genova, Italy
${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{31}$ Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{35}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{36}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{37}$ University of Liverpool, Liverpool L69 72E, United Kingdom
${ }^{38}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{39}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{40}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{41}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{42}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{43}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{44}$ Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{45}$ McGill University, Montréal, QC, Canada H3A $2 T 8$
${ }^{46}$ Dipartimento di Fisica and INFN, Università di Milano, I-20133 Milano, Italy
${ }^{47}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{48}$ Laboratoire René J. A. Lévesque, Université de Montréal, Montréal, QC, Canada H3C $3 J 7$
${ }^{49}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{50}$ Dipartimento di Scienze Fisiche and INFN, Università di Napoli Federico II, I-80126, Napoli, Italy
${ }^{51}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{52}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{53}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{54}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{55}$ Dipartimento di Fisica and INFN, Università di Padova, I-35131 Padova, Italy
${ }^{56}$ Laboratoire de Physique Nucléaire et de Hautes Energies, Universités Paris VI et VII, F-75252 Paris, France
${ }^{57}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{58}$ Dipartimento di Fisica and INFN, Università di Perugia, I-06100 Perugia, Italy
${ }^{59}$ Dipartimento di Fisica, Scuola Normale Superiore and INFN, Università di Pisa, I-56127 Pisa, Italy
${ }^{60}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{61}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{62}$ Dipartimento di Fisica and INFN, Università di Roma La Sapienza, I-00185 Roma, Italy
${ }^{63}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{64}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{65}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{66}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{67}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{68}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{69}$ State University of New York, Albany, New York 12222, USA
${ }^{70}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{71}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{72}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{73}$ Dipartimento di Fisica Sperimentale and INFN, Università di Torino, I-10125 Torino, Italy
${ }^{74}$ Dipartimento di Fisica and INFN, Università di Trieste, I-34127 Trieste, Italy
${ }^{75}$ Universitad de Valencia, E-46100 Burjassot, Valencia, Spain
${ }^{76}$ Vanderbilt University, Nashville, Tennessee 37235, USA
${ }^{77}$ University of Victoria, Victoria, BC, Canada V8W 3P6
${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{79}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{80}$ Yale University, New Haven, Connecticut 06511, USA
(Received 15 December 2004; published 18 October 2005)

We present measurements of the branching fractions for the three-body decays $B^{0} \rightarrow D^{(*) \mp} K^{0} \pi^{ \pm}$and their resonant submodes $B^{0} \rightarrow D^{(*) \mp} K^{* \pm}$ using a sample of approximately $88 \times 10^{6} B \bar{B}$ pairs collected by the $B A B A R$ detector at the SLAC PEP-II asymmetric energy storage ring. We measure: $\mathcal{B}\left(B^{0} \rightarrow\right.$ $\left.D^{\mp} K^{0} \pi^{ \pm}\right)=\left(4.9 \pm 0.7_{\text {stat }} \pm 0.5_{\text {syst }}\right) \times 10^{-4}, \quad \mathcal{B}\left(B^{0} \rightarrow D^{* \mp} K^{0} \pi^{ \pm}\right)=\left(3.0 \pm 0.7_{\text {stat }} \pm 0.3_{\text {syst }}\right) \times 10^{-4}$, $\mathcal{B}\left(B^{0} \rightarrow D^{\mp} K^{* \pm}\right)=\left(4.6 \pm 0.6_{\text {stat }} \pm 0.5_{\text {syst }}\right) \times 10^{-4}, \quad \mathcal{B}\left(B^{0} \rightarrow D^{* \mp} K^{* \pm}\right)=\left(3.2 \pm 0.6_{\text {stat }} \pm 0.3_{\text {syst }}\right) \times 10^{-4}$.

From these measurements we determine the fractions of resonant events to be $f\left(B^{0} \rightarrow D^{\mp} K^{* \pm}\right)=0.63 \pm$ $0.08_{\text {stat }} \pm 0.04_{\text {syst }}$ and $f\left(B^{0} \rightarrow D^{* \mp} K^{* \pm}\right)=0.72 \pm 0.14_{\text {stat }} \pm 0.05_{\text {syst }}$.

DOI: 10.1103/PhysRevLett.95.171802
PACS numbers: $13.25 . \mathrm{Hw}, 14.40 . \mathrm{Nd}$

Several independent measurements are needed to test the standard model description of $C P$ violation. The angle γ can be determined using decays of the type $B \rightarrow D^{(*)} K^{(*)}$ [1]. The experimental challenges are color suppression of the $b \rightarrow u$ transition, reconstruction of $D^{0} C P$ eigenstates, and interfering doubly-Cabibbo-suppressed decays (DCSD) [2]. Also, two-body mode analyses are complicated because there are eight degenerate solutions for γ in the interval $[0,2 \pi]$.

In recent papers [3,4] three-body decays have been suggested for measuring γ, since these do not suffer from the color suppression penalty. Furthermore, the channels $B^{0} \rightarrow D^{(*) \mp} K^{0} \pi^{ \pm}$do not have the above problems with $C P$ states and DCSD interference, and can resolve most of the ambiguities [3]. The angle γ can be extracted from a time-dependent Dalitz analysis of these decay modes.

The analysis presented here is based on $81.8 \mathrm{fb}^{-1}$ of data taken at the $Y(4 S)$ resonance, corresponding to approximately $88 \times 10^{6} B \bar{B}$ pairs, with the $B A B A R$ detector [5] at the SLAC PEP-II storage ring. We measure the branching fractions of the $B^{0} \rightarrow D^{(*) \mp} K^{0} \pi^{ \pm}$decays and consider their distribution in the Dalitz plot.

We reconstruct D^{+}mesons in the decay mode $K^{-} \pi^{+} \pi^{+}$ and D^{*+} mesons in the mode $D^{0} \pi^{+}$, with the D^{0} decaying to $K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{0}$, and $K^{-} \pi^{+} \pi^{-} \pi^{+}$. Here and throughout the Letter charge conjugate states are implied. Tracks from the D decay are required to originate from a common vertex. Positive kaon identification is enforced on kaons from D meson decays, except for the $D^{0} \rightarrow K^{-} \pi^{+}$mode.

The D^{+}candidates are required to have a mass within $12 \mathrm{MeV} / c^{2}(2 \sigma)$ of the D^{+}mass, while the mass of D^{0} candidates decaying to charged daughters only is required to lie within $15 \mathrm{MeV} / c^{2}(2.5 \sigma)$ of the D^{0} mass, where σ is the experimental resolution. The $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ candidates are required to have a mass within $30 \mathrm{MeV} / c^{2}$ (2.5σ) of the D^{0} mass and to be located at a point in the D^{0} Dalitz plot where the density of events is larger than 1.4% of the maximum density.

The D^{*+} candidates are accepted if the mass difference $m_{D^{*+}}-m_{D^{0}}$ is within $2 \mathrm{MeV} / c^{2}(3 \sigma)$ of the nominal value, except for the $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ candidates where we use $1.5 \mathrm{MeV} / c^{2}$ to reduce this mode's larger combinatoric background.

We combine oppositely charged tracks from a common vertex into K_{S}^{0} candidates. The K_{S}^{0} candidates are required to have a mass within $7 \mathrm{MeV} / c^{2}(3 \sigma)$ of the K_{S}^{0} mass and a transverse flight length that is significantly (4σ) greater than zero.

To form B^{0} candidates, the $D^{(*)+}$ candidates are combined with a K_{S}^{0} candidate and a π^{-}, for which the particle
identification (PID) is inconsistent with being a kaon or an electron. The probability of a common vertex is required to be above 0.1%. Using the beam energy, two almostindependent kinematic variables are constructed: the beam-energy substituted mass $m_{\mathrm{ES}} \equiv \sqrt{(\sqrt{s} / 2)^{2}-p_{B}^{* 2}}$, and the difference between the B^{0} candidate's measured energy and the beam energy, $\Delta E \equiv E_{B}^{*}-\sqrt{s} / 2$. The asterisk denotes evaluation in the $Y(4 S)$ c.m. frame. B^{0} candidates are required to have ΔE in the range $[-0.1,0.1] \mathrm{GeV}$, and m_{ES} in the range $[5.24,5.29] \times$ ([5.20, 5.288]) GeV / c^{2} for $D^{\mp} K^{0} \pi^{ \pm}\left(D^{* \mp} K^{0} \pi^{ \pm}\right)$.

To suppress the dominant continuum background events, which have a more jetlike shape than $B \bar{B}$ events, we use a linear combination, \mathcal{F}, of four variables: $L_{0}=$ $\sum_{i} p_{i}, L_{2}=\sum_{i} p_{i}\left|\cos \theta_{i}\right|^{2}$, and the absolute values of the cosine of the polar angles of the B momentum and of the B thrust direction [6]. Here, p_{i} is the momentum and θ_{i} is the angle with respect to the thrust axis of the signal B candidate of the tracks and clusters not used to reconstruct the B. All of these variables are calculated in the c.m. frame. The coefficients are chosen to maximize the separation between the signal Monte Carlo distribution and $9.6 \mathrm{fb}^{-1}$ of continuum events from data taken 40 MeV below the $\mathrm{Y}(4 S)$ resonance (off-resonance data). \mathcal{F} has negligible correlations with m_{ES} and ΔE.

After the event selection, approximately 5% of the events have more than one B^{0} candidate. We choose the one with m_{D} closest to the expected value and correct for differences between data and simulation. In simulated signal events, the final selection is 19.3% efficient for $B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}$and $15.5 \%, 3.9 \%$, and 8.2% efficient for $B^{0} \rightarrow D^{* \mp} K^{0} \pi^{ \pm}$in the three D^{0} decay modes $K^{-} \pi^{+}$, $K^{-} \pi^{+} \pi^{0}$, and $K^{-} \pi^{+} \pi^{-} \pi^{+}$, respectively.

We perform an unbinned extended maximum likelihood fit with the variables $m_{\mathrm{ES}}, \Delta E$, and \mathcal{F} on the selected candidates, using the logarithm of the likelihood

$$
\begin{equation*}
\ln \mathcal{L}=\sum_{i=\text { events }} \ln \left(\sum_{j} N_{j} P_{i j}\left(m_{\mathrm{ES}}^{i}, \Delta E^{i}, \mathcal{F}^{i}\right)\right)-\sum_{j} N_{j} \tag{1}
\end{equation*}
$$

where $P_{i j}$ is the product of probability density functions (PDFs) for event i of $m_{\mathrm{ES}}^{i}, \Delta E^{i}$, and \mathcal{F}^{i}, and N_{j} is the number of events of each sample component j : signal, continuum, combinatoric $B \bar{B}$ decays, and $B \bar{B}$ events that peak in m_{ES} but not in ΔE signal region (denoted peaking $B \bar{B}$ background).

The signal is described by a Gaussian distribution in m_{ES}, two Gaussian distributions with common mean in ΔE, and a Gaussian distribution with different widths on each side of the mean ("bifurcated Gaussian distribution") in \mathcal{F}. Their shape is obtained from the high-statistics data
control samples $B^{0} \rightarrow D^{(*) \mp} a_{1}^{ \pm}$(similar topology of the final state as the signal) for m_{ES} and ΔE, and $B^{0} \rightarrow$ $D^{* \mp} \pi^{ \pm}$for \mathcal{F}, and all nine parameters are fixed in the fit.

The continuum and combinatoric $B \bar{B}$ backgrounds are described by empirical endpoint functions [7] in m_{ES}, linear functions in ΔE, and bifurcated Gaussian distributions in \mathcal{F}. The \mathcal{F} distribution of continuum is obtained from off-resonance data, while the \mathcal{F} distribution of the $B \bar{B}$ backgrounds is obtained from Monte Carlo simulation, and compared with data in high-statistics samples to ensure that there is no significant difference. The two \mathcal{F} distributions and the common endpoint in m_{ES} are fixed in the fit, while the $m_{\text {ES }}$ shape and ΔE distributions are left free to float, leaving four out of 11 parameters free in the fit.

The peaking $B \bar{B}$ background is parametrized by a Gaussian distribution in m_{ES}, an exponential distribution in ΔE, and shares the PDF in \mathcal{F} with the nonpeaking $B \bar{B}$ background. The mean and width in m_{ES} of the peaking $B \bar{B}$ background are fixed to values obtained from Monte Carlo simulation, which are consistent with values measured in the ΔE sideband of data, thus adding one free and two fixed parameters.

The likelihood function is determined by the 27 parameters described above, of which all four yields and five background shape parameters are fitted. Subsequent to the fit, possible residual backgrounds from combinatoric D and K_{S}^{0} candidates are estimated using the sidebands of m_{D} and $m_{K_{s}^{0}}$, and subtracted.

The three-body and quasi-two-body [that is $B^{0} \rightarrow$ $\left.D^{(*) \mp} K^{* \pm}\right]$) branching fractions are obtained by fitting first without regard to event positions in the Dalitz plot, and then with the requirement that the $K_{S}^{0} \pi^{+}$invariant mass lie within $100 \mathrm{MeV} / c^{2}$ of the $K^{*+}(892)$ mass. Because of the relatively small number of background events in the second fit, all $B \bar{B}$ shape parameters are kept fixed to the value obtained in the first fit.

The results are shown in Fig. 1, while yields and purities [defined as $N_{\text {sig }} / \sigma^{2}\left(N_{\text {sig }}\right)$] are listed in Table I, with the K^{*+} resonant part included in the three-body state. To determine the three-body branching fractions optimally, a mapping of the efficiency across the Dalitz plot is needed. This is obtained from simulated signal events. Incorporating the efficiency variations ($\sim \pm 30 \%$) across the Dalitz plot requires a measure of the (a priori unknown) event distribution in the Dalitz plot. We obtain the number of signal events from the likelihood fit using weights defined as

$$
\begin{equation*}
W_{\mathrm{sig}}^{i} \equiv \frac{\sum_{j} \mathbf{V}_{\mathrm{sig}, j} P_{i j}\left(m_{\mathrm{ES}}^{i}, \Delta E^{i}, \mathcal{F}^{i}\right)}{\sum_{j} N_{j} P_{i j}\left(m_{\mathrm{ES}}^{i}, \Delta E^{i}, \mathcal{F}^{i}\right)}, \tag{2}
\end{equation*}
$$

where N_{j} and $P_{i j}$ are defined as in Eq. (1), and $\mathbf{V}_{\text {sig }, j}$ is the signal row of the covariance matrix of the component yields obtained from the likelihood fit. These weights $W_{\text {sig }}^{i}$, which in the absence of correlations are signal prob-

FIG. 1. $\quad m_{\mathrm{ES}}$ distributions in data for the four decay modes. In solid markers are shown events weighted by $W_{\text {sig }}$ (see text). Following the presciption of [8] the m_{ES} variable was removed from the likelihood to perform the second fit needed to obtain the $m_{\text {ES }}$ free yields and covariance matrix entering into $W_{\text {sig }}$. The PDF used in the main fit is superimposed for comparison. For comparison, the m_{ES} distribution obtained with $|\Delta E|<25 \mathrm{MeV}$ (2σ) is included (dotted points).
abilities $P_{\text {sig }} / P_{\text {total }}$, contain the signal distribution and its uncertainty for any quantity, uncorrelated with the variables in the likelihood fit [8]. It has been checked that the Dalitz variables have no significant correlation with the likelihood fit variables. It should be noted that because of

TABLE I. Signal yields and purities.

Decay mode	Signal yield	Purity
$B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}$	230 ± 24	40%
$B^{0} \rightarrow D^{\mp} K^{* \pm}$	143 ± 14	73%
$B^{0} \rightarrow D^{* \mp} K^{0} \pi^{ \pm}$	134 ± 17	46%
$B^{0} \rightarrow D^{* \mp} K^{* \pm}$	78 ± 10	78%

FIG. 2 (color online). Signal Dalitz distributions with events weighted by $W_{\text {sig }}$ and corrected for efficiency variations. Each bin is colored according to its contribution to the branching fraction. The bins in white also include the contributions which are negative but still statistically compatible with zero.
the use of the covariance matrix, the weight can be negative especially for backgroundlike events.

The efficiency-corrected Dalitz distributions, weighted by $W_{\text {sig }}$, are shown in Fig. 2. The $K^{*}(892)^{+}$resonance is dominant in both the $B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}$and $B^{0} \rightarrow$ $D^{* \mp} K^{0} \pi^{ \pm}$modes, while no other resonant structures are significant. In the $B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}$channel, the spin-1 $K^{* \pm}$ meson has the helicity distribution $d N / d \cos \theta \propto \cos ^{2} \theta$, where θ is the angle between the $K^{* \pm}$ and the K^{0} in the $K^{* \pm}$ center of mass frame. This can be seen in Fig. 3.

FIG. 3. Distribution of $\cos \theta$ for data for the $B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}$ decay mode in the $K^{* \pm}$ region using the signal weights $W_{\text {sig }}$ and correcting for efficiency variations. The solid curve shows the expected spin- 1 distribution $d N / d \cos \theta \propto \cos ^{2} \theta$.

The systematic errors are summarized in Table II. Most systematic errors are due to possible differences between data and Monte Carlo calculations. The tracking efficiency residuals and associated systematic error are obtained from a large sample of τ decays. The efficiency correction as a function of the position in the Dalitz plot obtained from simulated signal events comes with systematic uncertainties due to resolution effects and binning, which are mostly of statistical origin. $\mathrm{A} \pm 1 \sigma$ variation of all fixed variables in the fit, including relevant correlations, is used to obtain the systematic from the uncertainty in the PDFs.

Our final branching fraction results, weighting the three D^{0} modes according to their combined statistical and uncorrelated systematic error, are

$$
\begin{aligned}
\mathcal{B}\left(B^{0} \rightarrow D^{\mp} K^{0} \pi^{ \pm}\right) & =\left(4.9 \pm 0.7_{\text {stat }} \pm 0.5_{\text {syst }}\right) \times 10^{-4}, \\
\mathcal{B}\left(B^{0} \rightarrow D^{* \mp} K^{0} \pi^{ \pm}\right) & =\left(3.0 \pm 0.7_{\text {stat }} \pm 0.3_{\text {syst }}\right) \times 10^{-4}, \\
\mathcal{B}\left(B^{0} \rightarrow D^{\mp} K^{* \pm}\right) & =\left(4.6 \pm 0.6_{\text {stat }} \pm 0.5_{\text {syst }}\right) \times 10^{-4}, \\
\mathcal{B}\left(B^{0} \rightarrow D^{* \mp} K^{* \pm}\right) & =\left(3.2 \pm 0.6_{\text {stat }} \pm 0.3_{\text {syst }}\right) \times 10^{-4} .
\end{aligned}
$$

To summarize, a clear signal is seen in both the $B^{0} \rightarrow$ $D^{\mp} K^{0} \pi^{ \pm}$and $B^{0} \rightarrow D^{* \mp} K^{0} \pi^{ \pm}$channels, and in both modes the $K^{*}(892)^{+}$resonance is dominant. Defining the K^{*} resonant fractions, f, as $\mathcal{B}\left(B^{0} \rightarrow D^{(*) \mp} K^{* \pm}\right) \mathcal{B}\left(K^{*+} \rightarrow\right.$ $\left.K^{0} \pi^{+}\right) / \mathcal{B}\left(B^{0} \rightarrow D^{(*) \mp} K^{0} \pi^{ \pm}\right)$, we obtain the fractions $f\left(B^{0} \rightarrow D^{+} K^{* \pm}\right)=0.63 \pm 0.08_{\text {stat }} \pm 0.04_{\text {syst }}$ and $f\left(B^{0} \rightarrow\right.$ $\left.D^{* \mp} K^{* \pm}\right)=0.72 \pm 0.14_{\text {stat }} \pm 0.05_{\text {syst }}$, respectively, where the systematic errors are mainly from correcting for any possible nonresonant contributions.

Both the method of this analysis and the resulting threebody branching fraction measurements are the first of their kind, while the resonant decay modes have been measured before [9]. To determine the sensitivity to γ of these modes, a time-dependent Dalitz fit is required, for which the data sample is inadequate. However, the branching

TABLE II. Sources and sizes of systematic errors. The combined errors take correlations into account. All numbers are in percent.

Systematic	$D K \pi$	$D K^{*}$	$D^{*} K \pi$	$D^{*} K^{*}$
Tracking efficiency	5.9	5.9	6.1	6.3
PID efficiency	2.2	2.0	2.0	2.0
$\mathcal{B}\left(D^{*+}\right)$	\ldots	\ldots	0.7	0.7
$\mathcal{B}\left(D^{+/ 0}\right)$	6.5	6.5	3.4	3.8
$D^{(*)}$ reconstruction	0.7	0.7	1.2	1.2
K^{*+} fraction fit	\ldots	3.7	\ldots	5.1
$\mathcal{B}\left(K_{S}^{0}\right)$	0.2	0.2	0.2	0.2
K_{S}^{0} reconstruction	1.8	1.9	1.9	1.9
π^{0} reconstruction	\ldots	\ldots	0.8	1.2
PDF parametrization	4.5	2.9	7.1	3.7
Efficiency variation	3.5	4.9	6.3	5.6
$B \bar{B}$ counting	1.1	1.1	1.1	1.1
Combined error	11.0	11.6	12.6	12.2

fractions and Dalitz distributions suggest that these modes will be useful for measuring γ at the B factories.

We are grateful for the excellent luminosity and machine conditions provided by our SLAC PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.
*Also with Università della Basilicata, Potenza, Italy.
${ }^{\dagger}$ Deceased.
[1] M. Gronau and D. Wyler, Phys. Lett. B 265, 172 (1991); M. Gronau and D. London Phys. Lett. B 253, 483 (1991).
[2] D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. Lett. 78, 3257 (1997).
[3] R. Aleksan, T. C. Petersen, and A. Soffer, Phys. Rev. D 67, 096002 (2003).
[4] R. Aleksan and T. C. Petersen, in Proceedings of the CKM03 Workshop, Durham, 2003, eConf C0304052, WG414 (2003).
[5] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[6] E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
[7] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 185, 218 (1987); () 241, 278 (1990).
[8] M. Pivk and F. R. Le Diberder, physics/0402083 [Nucl. Instrum. Methods Phys. Res., Sect. A (to be published)].
[9] R. Mahapatra et al. [CLEO Collaboration], Phys. Rev. Lett. 88, 101803 (2002).

