46 research outputs found

    ICAM1 expression is induced by proinflammatory cytokines and associated with TLS formation in aggressive breast cancer subtypes

    Get PDF
    Source at https://doi.org/10.1038/s41598-018-29604-2.Intratumoral formation of tertiary lymphoid structures (TLS) within the tumor microenvironment is considered to be a consequence of antigen challenge during anti-tumor responses. Intracellular adhesion molecule 1 (ICAM1) has been implicated in a variety of immune and inflammatory responses, in addition to associate with triple negative breast cancer (TNBC). In this study, we detected TLS in the aggressive tumor phenotypes TNBC, HER2+ and luminal B, whereas the TLS negative group contained solely tumors of the luminal A subtype. We show that ICAM1 is exclusively expressed in TNBC and HER2 enriched subtypes known to be associated with inflammation and the formation of TLS. Furthermore, cell from normal mammary epithelium and breast cancer cell lines expressed ICAM1 upon stimulation with the proinflammatory cytokines TNFα, IL1β and IFNγ. ICAM1 overexpression was induced in MCF7, MDA-MB-468 and SK-BR-3 cells regardless of hormone receptor status. Taken together, our findings show that ICAM1 is expressed in aggressive subtypes of breast cancer and its expression is inducible by well-known proinflammatory cytokines. ICAM1 may be an attractive molecular target for TNBC, but further investigations elucidating the role of ICAM1 in targeted therapies have to take into consideration selective subtypes of breast cancer

    Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesEpithelial to mesenchymal transition (EMT) has implications in tumor progression and metastasis. Metabolic alterations have been described in cancer development but studies focused on the metabolic re-wiring that takes place during EMT are still limited. We performed metabolomics profiling of a breast epithelial cell line and its EMT derived mesenchymal phenotype to create genome-scale metabolic models descriptive of both cell lines. Glycolysis and OXPHOS were higher in the epithelial phenotype while amino acid anaplerosis and fatty acid oxidation fueled the mesenchymal phenotype. Through comparative bioinformatics analysis, PPAR-γ1, PPAR- γ2 and AP-1 were found to be the most influential transcription factors associated with metabolic re-wiring. In silico gene essentiality analysis predicts that the LAT1 neutral amino acid transporter is essential for mesenchymal cell survival. Our results define metabolic traits that distinguish an EMT derived mesenchymal cell line from its epithelial progenitor and may have implications in cancer progression and metastasis. Furthermore, the tools presented here can aid in identifying critical metabolic nodes that may serve as therapeutic targets aiming to prevent EMT and inhibit metastatic dissemination.Icelandic Research Counci

    National identity predicts public health support during a global pandemic (vol 13, 517, 2022) : National identity predicts public health support during a global pandemic (Nature Communications, (2022), 13, 1, (517), 10.1038/s41467-021-27668-9)

    Get PDF
    Publisher Copyright: © The Author(s) 2022.In this article the author name ‘Agustin Ibanez’ was incorrectly written as ‘Augustin Ibanez’. The original article has been corrected.Peer reviewe

    Author Correction: National identity predicts public health support during a global pandemic

    Get PDF
    Correction to: Nature Communications https://doi.org/10.1038/s41467-021-27668-9, published online 26 January 2022
    corecore