51 research outputs found

    Simulation and experimental verification of W-band finite frequency selective surfaces on infinite background with 3D full wave solver NSPWMLFMA

    Get PDF
    We present the design, processing and testing of a W-band finite by infinite and a finite by finite Grounded Frequency Selective Surfaces (FSSs) on infinite background. The 3D full wave solver Nondirective Stable Plane Wave Multilevel Fast Multipole Algorithm (NSPWMLFMA) is used to simulate the FSSs. As NSPWMLFMA solver improves the complexity matrix-vector product in an iterative solver from O(N(2)) to O(N log N) which enables the solver to simulate finite arrays with faster execution time and manageable memory requirements. The simulation results were verified by comparing them with the experimental results. The comparisons demonstrate the accuracy of the NSPWMLFMA solver. We fabricated the corresponding FSS arrays on quartz substrate with photolithographic etching techniques and characterized the vector S-parameters with a free space Millimeter Wave Vector Network Analyzer (MVNA)

    Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation.

    Get PDF
    Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    A Meta-Analysis of Thyroid-Related Traits Reveals Novel Loci and Gender-Specific Differences in the Regulation of Thyroid Function

    Get PDF
    Peer reviewe

    Analysis of the dynamic behaviour of an integrated drivetrain in a wind turbine

    No full text
    The wind turbine industry is currently booming and manufacturers are doing much research to improve the general design and capacity of their machines. However, upscaling of the classical drive train concept seems no longer economically feasible for machine power of 2 MW and higher. To save costs, a new concept should aim at a more integrated approach. This paper presents the preliminary results of dynamic studies on a new design concept for a more integrated drive train in a multi megawatt wind turbine. At first, a rather coarse finite element model is used to analyse the dynamic behaviour of the entire system. Then, a linear multibody model of the drive train is built for the analysis of torsional vibrations. This model counts 17 bodies and includes two planetary gear stages. Further research is planned to extend the model with extra degrees of freedom and non-linearities.status: publishe

    Disentangle a Complex MALDI TOF Mass Spectrum of Polyethylene Glycols into Three Separate Spectra via Selective Formation of Protonated Ions and Sodium or Potassium Adducts

    Get PDF
    In MALDI TOF MS analysis, complicated mass spectra can usually be recorded for polymers with high affinities to protons and alkali metal ions. For these polymers, protonated ions and sodium and potassium adducts can often be formed concomitantly. By distributing these ions into three separate spectra of protonated ions, sodium adducts, and potassium adducts, significantly simplified spectra can be acquired. Mass spectra consisting of only sodium or potassium adducts can often be obtained by simply adding sodium salt and potassium salt, respectively. We report here a method to selectively generate protonated ions. A polyethylene glycol (PEG) sample with amino end groups was selected as the model polymer and α-cyano-4-hydroxycinnamic acid (CHCA) as the matrix. Octadecylamine (ODA) or a mixture of a tetrabutylammonium (TBA) salt and an ammonium salt was used as the co-matrix to inhibit the release of sodium and potassium ions and their related adducts into the MALDI gas phase plume. By depositing the polymer sample on top of a preloaded layer of CHCA with a co-matrix, the generation of Na+ and K+ adducts is suppressed, while [ODA + H]+ and NH4+ released from the preloaded matrix layer can serve as protonation reagents to protonate the polymer molecules via proton transfer reactions. It is clearly demonstrated that disentangling a complex mass spectrum filled densely with various series of ions into three separate spectra, with each one consisting of only one type of ions, allows unambiguous identification of mass peaks and greatly helps the interpretation of MS results

    Self-healing supramolecular polymers in action

    No full text
    Sophisticated polymeric materials with "responsive" properties, such as self-healing, are beginning to reach the market. Supramolecular polymers, i.e., polymers that owe their mechanical properties primarily to the reversible, non-covalent interactions, such as hydrogen bonding interactions, between the macromolecules, have frequently been employed as self-healing materials. The quadruple hydrogen bonding ureidopyrimidinone (UPy) unit is a particularly effective and versatile design motif, since it forms very strong but reversible linkages, and can be incorporated into virtually any type of polymer backbone, leading to materials with increased mechanical properties. Supramolecular polymers are presented, with an emphasis on those based on the UPy-unit, and their use in self-healing applications is highlighted and discussed. Supramolecular polymers are eminently useful in self-healing applications. The reversible nature of supramolecular polymers allows for self-healing processes to take place, using a contact pressure trigger or a heat trigger. Several materials are presented with an emphasis on ureidopyrimidinone (UPy) comprising supramolecular polymer

    Novel supramolecular block copolymer of isotactic polypropylene and ethylene-co-propylene connected by complementary quadruple hydrogen bonding system

    No full text
    Supramolecular block copolymers comprising isotactic polypropylene (iPP) and ethylene-propylene random copolymers (EP) with complementary quadruple hydrogen bonding junctions have been prepared by melt-mixing of iPP having a 2-ureido-4[1H]-pyrimidinone (UPy) group (iPP-UPy) and elastic EP bearing a 2,7-diamido-1,8-naphthyridine (Napy) group (EP-Napy). Transmission electron microscope (TEM) analysis of the iPP-UPy/EP-Napy composite showed that the elastic EP domains were well dispersed in the iPP matrix compared with the traditional iPP/EP impact polypropylene copolymer (IPC). The iPP-UPy/EP-Napy hydrogen-bonded pseudo block copolymer effectively acts as a compatibilizer in the IPC and contributes to improved mechanical properties of the resulting iPP/EP composite. There is good correlation between impact strength of the IPC and EP domain size observed by the TEM analysis. The use of the complementary quadruple hydrogen bonding system for blending two immiscible polymers has been shown to result in smaller domain sizes of the EP-phase in the iPP and consequently improved mechanical properties of the supramolecular iPP/EP blends
    corecore