18 research outputs found

    Objetivos ambientales de la agricultura española: recomendaciones científicas para su implementacion efectiva según la nueva política agraria común 2023-2030

    Get PDF
    [EN]: The next reform ofthe EU Common Agricultural Policy (CAP) for the period 2021-2027 (currently extended to 2023-2030) requires the approval by the European Commission of a Strategic Plan with environmental objectives for each Member State. Here we use the best available scientific evidence on the relationships between agricultural practices and biodiversity to delineate specific recommendations for the development of the Spanish Strategic Plan. Scientific evidence shows that Spain should (1) identify clear regional biodiversity targets and the landscape-level measures needed to achieve them; (2) define ambitious and complementary criteria across the three environmental instruments (enhanced conditionality, eco-schemes, and agri-environmental and climate measures) of the CAP’s Green Architecture, especially in simple and complex landscapes; (3) ensure that other CAP instruments (areas of nature constraints, organic farming and protection of endangered livestock breeds and crop varieties) really support biodiversity; (4) improve farmers’ knowledge and adjust measures to real world constraints; and (5) invest in biodiversity and ecosystem service monitoring in order to evaluate how the Plan achieves regional and national targets andto improve measures if targets are not met. We conclude that direct assessments of environmental objectives are technically and economi- cally feasible, can be attractive to farmers, and are socially fair and of great interest for improving the environmental effectiveness of CAP measures. The explicit and rigorous association of assessments and monitoring, relating specific environmental indicators to regional objectives, should be the main criterion for the approval of the Strategic Plan in an environmentally-focused CAP2023-2030.[ES]: La reforma de la Política Agraria Común (PAC) para el periodo 2021-2027 (extendido en la actualidad a 2023-2030) exige que la Comisión Europea apruebe un Plan Estratégico por cada Estado Miembro con claros objetivos ambientales. En este trabajo desarrollamos recomendaciones específicas para la elaboración del Plan Estratégico para los sistemas agrícolas españoles, basadas en la mejor evidencia científica disponible sobre las relaciones entre la gestión agrícola y los componentes de la biodiversidad. La evidencia científica muestra que España debe 1) identificar objetivos regionales claros relativos a la biodiversidad de los medios agrarios y las medidas a nivel paisajístico necesarias para alcanzarlas; 2) definir criterios ambiciosos y complementarios para los tres instrumentos ambientales (condicionalidad extendida, eco-esquemas y medidas agroambientales y climáticas) de la Arquitectura Verde de la PAC, especialmente en paisajes sencillos y complejos; 3) garantizar que otros instrumentos de la PAC (zonas desfavorecidas, agricultura ecológica y protección de razas ganaderas y variedades de cultivos en peligro de extinción) favorecen realmente la diversidad biológica; 4) mejorar el conocimiento de los agricultores y ajustar las medidas a las limitaciones del mundo real; y 5) invertir en seguimiento de la biodiversidad y sus servicios ecosistémicos asociados con el fin de evaluar si el Plan alcanza los objetivos regionales y nacionales y mejorarlos adaptativamente si no lo consigue. Concluimos que la evaluación directa de los objetivos ambientales es técnica y económicamente viable, puede ser atractiva para los agricultores, es socialmente justa y de gran utilidad en la mejora de la efectividad de las medidas de la PAC. Una combinación rigurosa de seguimiento y evaluación de medidas y objetivos adaptados regionalmente mediante indicadores ambientales directos y claros debería ser el criterio que guíe la aprobación del Plan Estratégico para una PAC 2023-2030 centrada en el medio ambiente y orientada a la conservación de la biodiversidad.Peer reviewe

    LOTVS: a global collection of permanent vegetation plots

    Get PDF
    Analysing temporal patterns in plant communities is extremely important to quantify the extent and the consequences of ecological changes, especially considering the current biodiversity crisis. Long-term data collected through the regular sampling of permanent plots represent the most accurate resource to study ecological succession, analyse the stability of a community over time and understand the mechanisms driving vegetation change. We hereby present the LOng-Term Vegetation Sampling (LOTVS) initiative, a global collection of vegetation time-series derived from the regular monitoring of plant species in permanent plots. With 79 data sets from five continents and 7,789 vegetation time-series monitored for at least 6 years and mostly on an annual basis, LOTVS possibly represents the largest collection of temporally fine-grained vegetation time-series derived from permanent plots and made accessible to the research community. As such, it has an outstanding potential to support innovative research in the fields of vegetation science, plant ecology and temporal ecology

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Data from: Assessing vulnerability of functional diversity to species loss: a case study in Mediterranean agricultural systems

    No full text
    Increasing land-use intensification is leading to biodiversity losses world-wide, which can reduce the functioning of ecosystems. However, it is increasingly clear that not all species are equally important for ecosystem processes: whereas the loss of a functionally unique species may reduce the capacity of the community to perform some functions, losing a functionally redundant species should have a much smaller impact. Assessing the vulnerability of functional diversity (FD) to species extinctions can help to predict the impacts of land-use intensification. This approach consists in ranking species according to their risk of extinction and then estimating the trajectory followed by FD as species are lost from local communities. However, the most widely used FD indices are not independent of species richness, being much more sensitive to the loss of species in species-poor than in species-rich sites. This may result in misleading interpretations, affecting our ability to rank communities according to the vulnerability of their FD to species loss, by confounding it with the initial level of species richness. Here, we propose comparing the trajectory of FD under the most plausible order of species loss with that followed under random species losses as an effective way to remove the trivial effect of species richness in the assessments of vulnerability to species loss. After decoupling vulnerability from species richness, we used it to analyse the effect of agricultural intensification on the vulnerability of arable plant communities in Mediterranean agricultural fields. Our results show that management strategies aiming to increase the functionality of these systems should focus on intermediately intensified fields, where small reductions in the level of intensification are likely to benefit arable plant diversity, increasing the number of species and FD and decreasing the vulnerability of FD to species losses. Removing the effect of species richness is essential to attain unbiased estimations of the vulnerability of communities to species loss, especially when species-poor communities are considered. Combining vulnerability with information on taxonomic and functional diversity appears as a promising tool to inform decision-making processes, anticipating the effects of local extinctions

    Abundances

    No full text
    Species identities and relative abundances of each species on each sampling point of each field

    Agriculture intensification reduces plant taxonomic and functional diversity across European arable systems

    No full text
    Agricultural intensification is one of the main drivers of species loss worldwide, but there is still a lack of information about its effect on functional diversity of arable weed communities. Using a large-scale pan European study including 786 fields within 261 farms from eight countries, we analysed differences in the taxonomic and functional diversity of arable weeds assemblages across different levels of agricultural intensification. We estimated weed species frequency in each field, and collected species' traits (vegetative height, SLA and seed mass) from the TRY plant trait database. With this information, we estimated taxonomic (species richness), functional composition (community weighted means) and functional diversity (functional richness, evenness, divergence and redundancy). We used indicators of agricultural management intensity at the individual field scale (e.g. yield, inputs of nitrogen fertilizer and herbicides, frequency of mechanical weed control practices) and at the landscape scale surrounding the field (i.e. number of crop types, mean field size and proportion of arable land cover within a radius of 500 m from the sampling points). The effects of agricultural intensification on species and functional richness at the field scale were stronger than those of intensification at the landscape scale, and we did not observe evidence of interacting effects between the two scales. Overall, assemblages in more intensified areas had fewer species, a higher prevalence of species with ruderal strategies (low stature, high leaf area, light seeds), and lower functional redundancy. Maintaining the diversity of Europe's arable weed communities requires some simple management interventions, for example, reducing the high intensity of field-level agricultural management across Europe, which could be complemented by interventions that increase landscape complexity. A free Plain Language Summary can be found within the Supporting Information of this article.</p

    Agricultural intensification reduces plant taxonomic and functional diversity across European arable systems

    No full text
    1. Agricultural intensification is one of the main drivers of species loss worldwide, but there is still a lack of information about its effect on functional diversity of arable weeds communities. 2. Using a large scale pan European study including 786 fields within 261 farms from eight countries, we analysed differences in the taxonomic and functional diversity of arable weeds assemblages across different levels of agricultural intensification in. We estimated weed species frequency in each field, and collected species’ traits (vegetative height, specific leaf area and seed mass) from the TRY plant trait database. With this information we estimated taxonomic (species richness), functional composition (community weighted means) and functional diversity (functional richness, evenness, divergence and redundancy). We used indicators of agricultural management intensity at the individual field scale (e.g. yield, inputs of nitrogen fertilizer and herbicides, frequency of mechanical weed control practices) and at the landscape scale surrounding the field (i.e. number of crop types, mean field size and proportion of arable land cover within a radius of 500m from the sampling points). 3. The effects of agricultural intensification on species and functional richness at the field scale were stronger than those of intensification at the landscape scale, and we did not observe evidence of interacting effects between the two scales. Overall, assemblages in more intensified areas had fewer species, a higher prevalence of species with ruderal strategies (low stature, high leaf area, light seeds), and lower functional redundancy. 4. Maintaining the diversity of Europe’s arable weed communities requires some simple management interventions, for example, reducing the high intensity of field-level agricultural management across Europe, which could be complemented by interventions that increase landscape complexity

    Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?

    Get PDF
    � Most plant species have a range of traits that deter herbivores. However, understanding of how different defences are related to one another is surprisingly weak. Many authors argue that defence traits trade off against one another, while others argue that they form coordinated defence syndromes. � We collected a dataset of unprecedented taxonomic and geographic scope (261 species spanning 80 families, from 75 sites across the globe) to investigate relationships among four chemical and six physical defences. � Five of the 45 pairwise correlations between defence traits were significant and three of these were tradeoffs. The relationship between species’ overall chemical and physical defence levels was marginally nonsignificant (P = 0.08), and remained nonsignificant after accounting for phylogeny, growth form and abundance. Neither categorical principal component analysis (PCA) nor hierarchical cluster analysis supported the idea that species displayed defence syndromes. � Our results do not support arguments for tradeoffs or for coordinated defence syndromes. Rather, plants display a range of combinations of defence traits. We suggest this lack of consistent defence syndromes may be adaptive, resulting from selective pressure to deploy a different combination of defences to coexisting species

    Synchrony matters more than species richness in plant community stability at a global scale

    Get PDF
    The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability
    corecore