52 research outputs found

    New records of Chara connivens P. Salzmann ex A. Braun 1835 – an extremely rare and protected species in Polish brackish waters

    Get PDF
    The stonewort Chara connivens was rediscovered in the Vistula Lagoon in 2011, almost 35 years after its last record. In 2012, the species was recorded for the first time in the Szczecin Lagoon. Chara connivens occurred at shallow (0.5–1.2 m) sandy-muddy and muddy bottoms of small embayments. In the Vistula Lagoon, the stonewort was represented by single small specimens, while in the Szczecin Lagoon, it formed dense and extensive patches

    Ecology of charophytes – permanent pioneers and ecosystem engineers

    Get PDF
    For almost a century, charophytes have been regarded as a group that is confined to low-nutrient-clear water conditions. In light of recent research, this generalisation of the ecological niche dimensions of charophytes has changed and now includes more facets of ecological existence. In this review, the current knowledge with respect to species-specificity as well as temporal aspects – ontogenetic and successional ones – of the ecological requirements of charophytes are presented and discussed. This review identifies new directions for ecological research on charophytes as well as knowledge gaps to be filled, not just for reasons of academic curiosity, but also for applied purposes such as lake restoration, bioremediation and bioindication of water quality and water regime

    A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    Get PDF

    Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Get PDF
    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.Peer reviewe

    Data Descriptor : A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    Get PDF
    Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.Peer reviewe

    Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

    Get PDF
    To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L−1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4°C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature

    Inter- and intra-specific variability in δ13C and δ18O values of freshwater gastropod shells from Lake Lednica, western Poland

    No full text
    This study focuses on the inter- and intra-specific variability in δ13C and δ18O values of shells and opercula of gastropods sampled live from the littoral zone of Lake Lednica, western Poland. The δ13C and δ18O values were measured in individual opercula of Bithynia tentaculata and in shells of Bithynia tentaculata, Gyraulus albus, Gyraulus crista, Lymnaea sp., Physa fontinalis, Radix auricularia, Theodoxus fluviatilis and Valvata cristata. The gastropods selected for the study are among the species most commonly found in European Quaternary lacustrine sediments. The carbon isotope composition of the gastropod shells was species-specific and the same order of species from the most to the least 13C-depleted was observed at all sites sampled. Differences in shell δ13C values between species were similar at all sampling sites, thus the factors influencing shell isotopic composition were interpreted as species-specific. The δ18O values of shells were similar in all the species investigated. Significant intra-specific variability in shell δ13C and δ18O values was observed not only within the populations of Lake Lednica, which can be explained by heterogeneity of δ13C DIC, δ18O water and water temperature between the sites where macrophytes with snails attached were sampled, but also between individuals sampled from restricted areas of the lake’s bottom. The latter points to the importance of factors related to the ontogeny of individual gastropods
    corecore