181 research outputs found

    Neogene to Quaternary evolution of carbonate and mixed carbonate-siliciclastic systems along New Caledonia's eastern margin (SW Pacific)

    Get PDF
    Neogene and Quaternary shallow-water carbonate records surrounding New Caledonia main island, Grande Terre, provide a good example for understanding the stratigraphic architecture of tropical mixed carbonate-siliciclastic systems. Due to a southeastern tilt of the eastern margin, the eastern shelf of Grande Terre has been better preserved from erosion than the western part, favouring the development and preservation of shallow-water carbonates. Based on the integration of bathymetric and seismic data, along with paleoenvironmental and biostratigraphic constraints derived from dredged carbonate rocks, a comprehensive geomorphological and architectural characterization of the offshore eastern margin of Grande Terre has been made. During the Mio-Pliocene, a wide, up to 750 m-thick carbonate build-up developed and extended over at least 350 km from north to south. This Mio-Pliocene build-up, currently lying at 300 to 600 m water depths, is overlain by a Pleistocene-Holocene barrier reef-lagoon complex and associated slope deposits. The switch from aggrading Neogene carbonate banks to backstepping Quaternary platforms likely reflects an increase in accommodation due to a high subsidence rate or to relative sea-level rise, and/or results from a switch in carbonate producers associated with global environmental changes. The internal architecture of the Quaternary barrier reef-lagoon complex is highlighted, especially the development of lowstand siliciclastic prisms alternating with transgressive shallow-water carbonate sequences. This pattern agrees with the reciprocal sedimentation model typically invoked for mixed sedimentary systems. This stratigraphic pattern is well developed in front of the Cap Bayes inlet in the north of our study area, yet it is not observed southward along the eastern margin. This difference suggests that other factors than relative sea-level variations directed the architecture of the margin, such as low terrigenous inputs, lagoon paleo-drainage networks or sediment by-pass towards deep basins

    Neotectonics of the Owen Fracture Zone (NW Indian Ocean): structural evolution of an oceanic strike-slip plate boundary

    No full text
    International audienceThe Owen Fracture Zone is a 800 km-long fault system that accommodates the dextral strike-slip motion between India and Arabia plates. Because of slow pelagic sedimentation rates that preserve the seafloor expression of the fault since the Early Pliocene, the fault is clearly observed on bathymetric data. It is made up of a series of fault segments separated by releasing and restraining bends, including a major pull-apart basin at latitude 20°N. Some distal turbiditic channels from the Indus deep-sea fan overlap the fault system and are disturbed by its activity, thus providing landmarks to date successive stages of fault activity and structural evolution of the Owen Fracture Zone from Pliocene to Present. We determine the durability of relay structures and the timing of their evolution along the principal displacement zone, from their inception to their extinction. We observe subsidence migration in the 20°N basin, and alternate activation of fault splays in the vicinity of the Qalhat seamount. The present-day Owen Fracture Zone is the latest stage of structural evolution of the 20-Myr-old strike-slip fault system buried under Indus turbiditic deposits whose activity started at the eastern foot of the Owen Ridge when the Gulf of Aden opened. The evolution of the Owen Fracture Zone since 3-6 Myr reflects a steady state plate motion between Arabia and India, such as inferred by kinematics for the last 20 Myr period. The structural evolution of the Owen Fracture Zone since 20 Myr- including fault segments propagation and migration, pull-apart basin opening and extinction - seems to be characterized by a progressive reorganisation of the fault system, and does not require any major kinematics change

    Tracking the Late Jurassic apparent (or true) polar shift in U-Pb-dated kimberlites from cratonic North America (Superior Province of Canada)

    Get PDF
    Different versions of a composite apparent polar wander (APW) path of variably selected global poles assembled and averaged in North American coordinates using plate reconstructions show either a smooth progression or a large (∼30°) gap in mean paleopoles in the Late Jurassic, between about 160 and 145 Ma. In an effort to further examine this issue, we sampled accessible outcrops/subcrops of kimberlites associated with high-precision U-Pb perovskite ages in the Timiskaming area of Ontario, Canada. The 154.9 ± 1.1 Ma Peddie kimberlite yields a stable normal polarity magnetization that is coaxial within less than 5° of the reverse polarity magnetization of the 157.5 ± 1.2 Ma Triple B kimberlite. The combined ∼156 Ma Triple B and Peddie pole (75.5°N, 189.5°E, A95 = 2.8°) lies about midway between igneous poles from North America nearest in age (169 Ma Moat volcanics and the 146 Ma Ithaca kimberlites), showing that the polar motion was at a relatively steady yet rapid (∼1.5°/Myr) pace. A similar large rapid polar swing has been recognized in the Middle to Late Jurassic APW path for Adria-Africa and Iran-Eurasia, suggesting a major mass redistribution. One possibility is that slab breakoff and subduction reversal along the western margin of the Americas triggered an episode of true polar wander

    Late Cretaceous Vicariance in Gondwanan Amphibians

    Get PDF
    Overseas dispersals are often invoked when Southern Hemisphere terrestrial and freshwater organism phylogenies do not fit the sequence or timing of Gondwana fragmentation. We used dispersal-vicariance analyses and molecular timetrees to show that two species-rich frog groups, Microhylidae and Natatanura, display congruent patterns of spatial and temporal diversification among Gondwanan plates in the Late Cretaceous, long after the presumed major tectonic break-up events. Because amphibians are notoriously salt-intolerant, these analogies are best explained by simultaneous vicariance, rather than by oceanic dispersal. Hence our results imply Late Cretaceous connections between most adjacent Gondwanan landmasses, an essential concept for biogeographic and palaeomap reconstructions

    Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 3 (2010): 286-292, doi:10.1038/ngeo824.Mid-ocean ridge crustal accretion occurs continuously at all spreading rates through a combination of magmatic and tectonic processes. Fast to slow spreading ridges are largely built by adding magma to narrowly focused neovolcanic zones. In contrast, ultraslow spreading ridge construction significantly relies on tectonic accretion, which is characterized by thin volcanic crust, emplacement of mantle peridotite directly to the seafloor, and unique seafloor fabrics with variable segmentation patterns. While advances in remote imaging have enhanced our observational understanding of crustal accretion at all spreading rates, temporal information is required in order to quantitatively understand mid-ocean ridge construction. However, temporal information does not exist for ultraslow spreading environments. Here, we utilize U-series eruption ages to investigate crustal accretion at an ultraslow spreading ridge for the first time. Unexpectedly young eruption ages throughout the Southwest Indian ridge rift valley indicate that neovolcanic activity is not confined to the spreading axis, and that magmatic crustal accretion occurs over a wider zone than at faster spreading ridges. These observations not only suggest that crustal accretion at ultraslow spreading ridges is distinct from faster spreading ridges, but also that the magma transport mechanisms may differ as a function of spreading rate.This work was supported by the following NSF grants: NSF-OCE 0137325; NSF-OCE 060383800; and NSF-OCE 062705300

    Paleoclimate Implications for Human-Made Climate Change

    Full text link
    Paleoclimate data help us assess climate sensitivity and potential human-made climate effects. We conclude that Earth in the warmest interglacial periods of the past million years was less than 1{\deg}C warmer than in the Holocene. Polar warmth in these interglacials and in the Pliocene does not imply that a substantial cushion remains between today's climate and dangerous warming, but rather that Earth is poised to experience strong amplifying polar feedbacks in response to moderate global warming. Thus goals to limit human-made warming to 2{\deg}C are not sufficient - they are prescriptions for disaster. Ice sheet disintegration is nonlinear, spurred by amplifying feedbacks. We suggest that ice sheet mass loss, if warming continues unabated, will be characterized better by a doubling time for mass loss rate than by a linear trend. Satellite gravity data, though too brief to be conclusive, are consistent with a doubling time of 10 years or less, implying the possibility of multi-meter sea level rise this century. Observed accelerating ice sheet mass loss supports our conclusion that Earth's temperature now exceeds the mean Holocene value. Rapid reduction of fossil fuel emissions is required for humanity to succeed in preserving a planet resembling the one on which civilization developed.Comment: 32 pages, 9 figures; final version accepted for publication in "Climate Change at the Eve of the Second Decade of the Century: Inferences from Paleoclimate and Regional Aspects: Proceedings of Milutin Milankovitch 130th Anniversary Symposium" (eds. Berger, Mesinger and Sijaci

    When and where did India and Asia collide?

    Get PDF
    Timing of the collision between India and Asia is the key boundary condition in all models for the evolution of the Himalaya-Tibetan orogenic system. Thus it profoundly affects the interpretation of the rates of a multitude of associated geological processes ranging from Tibetan Plateau uplift through continental extrusion across eastern Asia, as well as our understanding of global climate change during the Cenozoic. Although an abrupt slowdown in the rate of convergence between India and Asia around 55 Ma is widely regarded as indicating the beginning of the collision, most of the effects attributed to this major tectonic episode do not occur until more than 20 Ma later. Refined estimates of the relative positions of India and Asia indicate that they were not close enough to one another to have collided at 55 Ma. On the basis of new field evidence from Tibet and a reassessment of published data we suggest that continent-continent collision began around the Eocene/Oligocene boundary (∼34 Ma) and propose an alternative explanation for events at 55 Ma. Copyright 2007 by the American Geophysical Union.published_or_final_versio

    Constraining the Jurassic extent of Greater India: Tectonic evolution of the West Australian margin

    Get PDF
    Alternative reconstructions of the Jurassic northern extent of Greater India differ by up to several thousand kilometers. We present a new model that is constrained by revised seafloor spreading anomalies, fracture zones and crustal ages based on drillsites/dredges from all the abyssal plains along the West Australian margin and the Wharton Basin, where an unexpected sliver of Jurassic seafloor (153 Ma) has been found embedded in Cretaceous (95 My old) seafloor. Based on fracture zone trajectories, this NeoTethyan sliver must have originally formed along a western extension of the spreading center that formed the Argo Abyssal Plain, separating a western extension of West Argoland/West Burma from Greater India as a ribbon terrane. The NeoTethyan sliver, Zenith and Wallaby plateaus moved as part of Greater India until westward ridge jumps isolated them. Following another spreading reorganization, the Jurassic crust resumed migrating with Greater India until it was re-attached to the Australian plate ∼95 Ma. The new Wharton Basin data and kinematic model place strong constraints on the disputed northern Jurassic extent of Greater India. Late Jurassic seafloor spreading must have reached south to the Cuvier Abyssal Plain on the West Australian margin, connected to a spreading ridge wrapping around northern Greater India, but this Jurassic crust is no longer preserved there, having been entirely transferred to the conjugate plate by ridge propagations. This discovery constrains the major portion of Greater India to have been located south of the large-offset Wallaby-Zenith Fracture Zone, excluding much larger previously proposed shapes of Greater India
    • …
    corecore