697 research outputs found
Orientations of the lamellar phase of block copolymer melts under oscillatory shear flow
We develop a theory to describe the reorientation phenomena in the lamellar
phase of block copolymer melt under reciprocating shear flow. We show that
similar to the steady-shear, the oscillating flow anisotropically suppresses
fluctuations and gives rise to the parallel-perpendicular orientation
transition. The experimentally observed high-frequency reverse transition is
explained in terms of interaction between the melt and the shear-cell walls.Comment: RevTex, 3 pages, 1 figure, submitted to PR
Real-time detection of carboplatin using a microfluidic system
A microfluidic sensor system based on a carbon nanotube-epoxy composite electrode was fabricated to allow detection of the presence of the anti-cancer drug carboplatin in healthy tissue in real time during chemotherapy. Detection of carboplatin was carried out by observing the effects of the drug on the differential pulse voltammetry of free purine bases using a novel carbon nanotube-epoxy composite electrode. In free solution these electrodes performed better than glassy carbon electrodes for oxidation of the free purine bases AMP and GMP, and than DNA-modified carbon nanotube-epoxy composite sensors for detection of carboplatin. On-line carboplatin detection was performed using a computer-controlled microfluidic platform. The methodology for on-line carboplatin detection was optimised in terms of the analysis time and of to allow repeated carboplatin measurement using the same electrode. Microdialysis sampling and our microfluidic platform were combined to give a proof of concept system for real-time carboplatin detection with a limit of detection of 0.014 mM carboplatin in the sampled media. This paper is dedicated to Craig Lunteâs pioneering work in analysis and microdialysis
Influence of confinement on the orientational phase transitions in the lamellar phase of a block copolymer melt under shear flow
In this work we incorporate some real-system effects into the theory of
orientational phase transitions under shear flow (M. E. Cates and S. T. Milner,
Phys. Rev. Lett. v.62, p.1856 (1989) and G. H. Fredrickson, J. Rheol. v.38,
p.1045 (1994)). In particular, we study the influence of the shear-cell
boundaries on the orientation of the lamellar phase. We predict that at low
shear rates the parallel orientation appears to be stable. We show that there
is a critical value of the shear rate at which the parallel orientation loses
its stability and the perpendicular one appears immediately below the spinodal.
We associate this transition with a crossover from the fluctuation to the
mean-field behaviour. At lower temperatures the stability of the parallel
orientation is restored. We find that the region of stability of the
perpendicular orientation rapidly decreases as shear rate increases. This
behaviour might be misinterpreted as an additional perpendicular to parallel
transition recently discussed in literature.Comment: 25 pages, 4 figures, submitted to Phys. Rev.
Measurements of the Ratios and
Using the CLEO~II detector we measure , and .
We find the vector to pseudoscalar ratio, , which is similar to the
ratio found in non strange decays.Comment: 11 page uuencoded postscript file, postscript file also available
through http://w4.lns.cornell.edu/public/CLN
Search for lepton-flavor violation at HERA
A search for lepton-flavor-violating interactions and has been performed with the ZEUS detector using the entire HERA I
data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data
were taken at center-of-mass energies, , of 300 and 318 GeV. No
evidence of lepton-flavor violation was found, and constraints were derived on
leptoquarks (LQs) that could mediate such interactions. For LQ masses below
, limits were set on , where
is the coupling of the LQ to an electron and a
first-generation quark , and is the branching ratio of
the LQ to the final-state lepton ( or ) and a quark . For
LQ masses much larger than , limits were set on the four-fermion
interaction term for LQs that couple to an electron and a quark
and to a lepton and a quark , where and are
quark generation indices. Some of the limits are also applicable to
lepton-flavor-violating processes mediated by squarks in -Parity-violating
supersymmetric models. In some cases, especially when a higher-generation quark
is involved and for the process , the ZEUS limits are the most
stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig.
6) adde
Multijet production in neutral current deep inelastic scattering at HERA and determination of alpha_s
Multijet production rates in neutral current deep inelastic scattering have
been measured in the range of exchanged boson virtualities 10 < Q2 < 5000 GeV2.
The data were taken at the ep collider HERA with centre-of-mass energy sqrt(s)
= 318 GeV using the ZEUS detector and correspond to an integrated luminosity of
82.2 pb-1. Jets were identified in the Breit frame using the k_T cluster
algorithm in the longitudinally invariant inclusive mode. Measurements of
differential dijet and trijet cross sections are presented as functions of jet
transverse energy E_{T,B}{jet}, pseudorapidity eta_{LAB}{jet} and Q2 with
E_{T,B}{jet} > 5 GeV and -1 < eta_{LAB}{jet} < 2.5. Next-to-leading-order QCD
calculations describe the data well. The value of the strong coupling constant
alpha_s(M_Z), determined from the ratio of the trijet to dijet cross sections,
is alpha_s(M_Z) = 0.1179 pm 0.0013(stat.) {+0.0028}_{-0.0046}(exp.)
{+0.0064}_{-0.0046}(th.)Comment: 22 pages, 5 figure
Measurement of (anti)deuteron and (anti)proton production in DIS at HERA
The first observation of (anti)deuterons in deep inelastic scattering at HERA
has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV
using an integrated luminosity of 120 pb-1. The measurement was performed in
the central rapidity region for transverse momentum per unit of mass in the
range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in
terms of the coalescence model. The (anti)deuteron production yield is smaller
than the (anti)proton yield by approximately three orders of magnitude,
consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the Ï(4S), Ï(3S), and Ï(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-âe+e- and (for the Ï(4S) only) e+e-âÎŒ+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-âe+e- and e+e-âÎŒ+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the Ï(3S) and Ï(2S) resonances, an additional uncertainty arises due to Ïâe+e-X background. For data collected off the Ï resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the Ï(4S), 0.58% (0.72%) for the Ï(3S), and 0.68% (0.88%) for the Ï(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă lâEnergie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
Photoproduction of mesons associated with a leading neutron
The photoproduction of mesons associated with a leading
neutron has been observed with the ZEUS detector in collisions at HERA
using an integrated luminosity of 80 pb. The neutron carries a large
fraction, {}, of the incoming proton beam energy and is detected at
very small production angles, { mrad}, an indication of
peripheral scattering. The meson is centrally produced with
pseudorapidity {
GeV}, which is large compared to the average transverse momentum of the neutron
of 0.22 GeV. The ratio of neutron-tagged to inclusive production is
in the photon-proton
center-of-mass energy range { GeV}. The data suggest that the
presence of a hard scale enhances the fraction of events with a leading neutron
in the final state.Comment: 28 pages, 4 figures, 2 table
Measurement of beauty production in deep inelastic scattering at HERA
The beauty production cross section for deep inelastic scattering events with
at least one hard jet in the Breit frame together with a muon has been
measured, for photon virtualities Q^2 > 2 GeV^2, with the ZEUS detector at HERA
using integrated luminosity of 72 pb^-1. The total visible cross section is
sigma_b-bbar (ep -> e jet mu X) = 40.9 +- 5.7 (stat.) +6.0 -4.4 (syst.) pb. The
next-to-leading order QCD prediction lies about 2.5 standard deviations below
the data. The differential cross sections are in general consistent with the
NLO QCD predictions; however at low values of Q^2, Bjorken x, and muon
transverse momentum, and high values of jet transverse energy and muon
pseudorapidity, the prediction is about two standard deviations below the data.Comment: 18 pages, 4 figure
- âŠ