130 research outputs found

    The Relationship between Maximal Urethral Closure Pressure and Functional Urethral Length in Anterior Vaginal Wall Prolapse Patients According to Stage and Age

    Get PDF
    MUCP (Maximal urethral closure pressure) is known to be increased in patients with vaginal wall prolapse due to the mechanical obstruction of the urethra. However, urethral function following reduction has not yet been completely elucidated. Predicting postoperative urethral function may provide patients with important, additional information prior to surgery. Thus, this study was performed to evaluate the relationship between MUCP and functional urethral length (FUL) according to stage and age in anterior vaginal wall prolapse patients. 139 patients diagnosed with anterior vaginal wall prolapse at Yonsei University Medical College (YUMC) from March 1999 to May 2003 who had underwent urethral pressure profilometry following reduction were included in this study. The stage of pelvic organ prolapse (POP) was determined according to the dependent portion of the anterior vaginal wall (Aa, Ba). (By International Continence Society's POP Quantification system) Patients were divided into one of four age groups: patients in their 40s (n=13), 50s (n=53), 60s (n=54), and 70 and over (n=16). No difference in MUCP was found between the age groups. The FUL of patients in their 40s was shorter than that of patient's in their 50s and 60s. Patients were also divided into stages: stage II (n=35), stage III (n=76), and stage IV (n=25). No significant difference in MUCP was found according to stage and FUL. However, a significant difference was noted between stage III and IV as stage IV was longer. Anterior vaginal wall prolapse is known to affect urethral function due to prolapse itself, but according to our study, prolapse itself did not alter urethral function. This suggests that, regardless of age and stage, prolapse corrective surgery does not affect the urethral function

    Aidnogenesis via Leptogenesis and Dark Sphalerons

    Get PDF
    We discuss aidnogenesis, the generation of a dark matter asymmetry via new sphaleron processes associated to an extra non-abelian gauge symmetry common to both the visible and the dark sectors. Such a theory can naturally produce an abundance of asymmetric dark matter which is of the same size as the lepton and baryon asymmetries, as suggested by the similar sizes of the observed baryonic and dark matter energy content, and provide a definite prediction for the mass of the dark matter particle. We discuss in detail a minimal realization in which the Standard Model is only extended by dark matter fermions which form "dark baryons" through an SU(3) interaction, and a (broken) horizontal symmetry that induces the new sphalerons. The dark matter mass is predicted to be approximately 6 GeV, close to the region favored by DAMA and CoGeNT. Furthermore, a remnant of the horizontal symmetry should be broken at a lower scale and can also explain the Tevatron dimuon anomaly.Comment: Minor changes, discussion of present constraints expanded. 16 pages, 2 eps figures, REVTeX

    Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2021

    Get PDF
    The 9th biennial conference titled “Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases” was hosted virtually, due to the ongoing COVID-19 pandemic, in collaboration with the University of Vermont Larner College of Medicine, the National Heart, Lung, and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, and the International Society for Cell & Gene Therapy. The event was held from July 12th through 15th, 2021 with a pre-conference workshop held on July 9th. As in previous years, the objectives remained to review and discuss the status of active research areas involving stem cells (SCs), cellular therapeutics, and bioengineering as they relate to the human lung. Topics included 1) technological advancements in the in situ analysis of lung tissues, 2) new insights into stem cell signaling and plasticity in lung remodeling and regeneration, 3) the impact of extracellular matrix in stem cell regulation and airway engineering in lung regeneration, 4) differentiating and delivering stem cell therapeutics to the lung, 5) regeneration in response to viral infection, and 6) ethical development of cell-based treatments for lung diseases. This selection of topics represents some of the most dynamic and current research areas in lung biology

    Prediagnosis Leisure-Time Physical Activity and Lung Cancer Survival: A Pooled Analysis of 11 Cohorts

    Get PDF
    Background: Little is known about the association between physical activity before cancer diagnosis and survival among lung cancer patients. In this pooled analysis of 11 prospective cohorts, we investigated associations of prediagnosis leisuretime physical activity (LTPA) with all-cause and lung cancer–specific mortality among incident lung cancer patients. Methods: Using self-reported data on regular engagement in exercise and sports activities collected at study enrollment, we assessed metabolic equivalent hours (MET-h) of prediagnosis LTPA per week. According to the Physical Activity Guidelines for Americans, prediagnosis LTPA was classified into inactivity, less than 8.3 and at least 8.3 MET-h per week (the minimum recommended range). Cox regression was used to estimate hazard ratios (HRs) and 95% confidence interval (CIs) for all-cause and lung cancer–specific mortality after adjustment for major prognostic factors and lifetime smoking history. Results: Of 20 494 incident lung cancer patients, 16 864 died, including 13 596 deaths from lung cancer (overall 5-year relative survival rate ÂŒ 20.9%, 95% CI ÂŒ 20.3% to 21.5%). Compared with inactivity, prediagnosis LTPA of more than 8.3 MET-h per week was associated with a lower hazard of all-cause mortality (multivariable-adjusted HR ÂŒ 0.93, 95% CI ÂŒ 0.88 to 0.99), but not with lung cancer–specific mortality (multivariable-adjusted HR ÂŒ 0.99, 95% CI ÂŒ 0.95 to 1.04), among the overall population. Additive interaction was found by tumor stage (Pinteraction ÂŒ .008 for all-cause mortality and .003 for lung cancer–specific mortality). When restricted to localized cancer, prediagnosis LTPA of at least 8.3 MET-h per week linked to 20% lower mortality: multivariableadjusted HRs were 0.80 (95% CIÂŒ 0.67 to 0.97) for all-cause mortality and 0.80 (95% CIÂŒ 0.65 to 0.99) for lung cancer–specific mortality. Conclusions: Regular participation in LTPA that met or exceeded the minimum Physical Activity Guidelines was associated with reduced hazards of mortality among lung cancer patients, especially those with early stage cancer

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    A comparison of complementary measures of vitamin B6 status, function, and metabolism in the European Prospective Investigation into Cancer and Nutrition (EPIC) study

    Get PDF
    Background: Vitamin B6 insufficiency has been linked to increased risk of cancer and other chronic diseases. The circulating concentration of pyridoxal 5'-phosphate (PLP) is a commonly used measure of vitamin B6 status. Ratios of substrates indicating PLP coenzymatic function and metabolism may be useful complementary measures to further explore the role of vitamin B6 in health. Objectives: We explored the sensitivity of 5 outcomes, namely PLP concentration, homocysteine:cysteine (Hcy:Cys), cystathionine:cysteine (Cysta:Cys), the 3ÂŽ-hydroxykynurenine ratio (HKr), and the 4-pyridoxic acid ratio (PAr) to vitamin B6 intake as well as personal and lifestyle characteristics. Medthods: Dietary intake and biomarker data were collected from participants from 3 nested case-control studies within the European Prospective Investigation into Cancer and Nutrition (EPIC). Bayesian regression models assessed the associations of the 5 biomarker outcomes with vitamin B6 intake and personal and lifestyle covariates. Analogous models examined the relations of Hcy:Cys, Cysta:Cys, and HKr with PLP. Results: In total, 4608 participants were included in the analyses. Vitamin B6 intake was most strongly associated with PLP, moderately associated with Hcy:Cys, Cysta:Cys, and HKr, and not associated with PAr (fold change in marker given a doubling of vitamin B6 intake: PLP 1.60 [95% credible interval (CrI): 1.50, 1.71]; Hcy:Cys 0.87 [95% CrI: 0.84, 0.90]; Cysta:Cys 0.89 [95% CrI: 0.84, 0.94]; HKr 0.88 [95% CrI: 0.85, 0.91]; PAr 1.00 [95% CrI: 0.95, 1.05]). PAr was most sensitive to age, and HKr was least sensitive to BMI and alcohol intake. Sex and menopause status were strongly associated with all 5 markers. Conclusions: We found that 5 different markers, capturing different aspects of vitamin B6-related biological processes, varied in their associations with vitamin B6 intake and personal and lifestyle predictors

    Obesity, Metabolic Factors and Risk of Different Histological Types of Lung Cancer: A Mendelian Randomization Study

    Get PDF
    Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01–1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15–2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79–1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84–0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25–2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior

    Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study.

    Get PDF
    BACKGROUND: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. METHODS AND FINDINGS: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79-1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. CONCLUSIONS: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior
    • 

    corecore