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Abstract

We discuss aidnogenesis1, i.e. the generation of a dark matter asymmetry, via new sphaleron

processes associated to an extra non-abelian gauge symmetry common to both the visible and the

dark sectors. Such a theory can naturally produce an abundance of asymmetric dark matter which

is of the same size as the lepton and baryon asymmetries, as suggested by the similar sizes of the

observed baryonic and dark matter energy content, and provide a definite prediction for the mass of

the dark matter particle. We discuss in detail a minimal realization in which the Standard Model is

only extended by dark matter fermions which form “dark baryons” through an SU(3) interaction,

and a (broken) horizontal symmetry that induces the new sphalerons. The dark matter mass is

predicted to be ∼ 6 GeV, close to the region favored by DAMA and CoGeNT. Furthermore, a

remnant of the horizontal symmetry should be broken at a lower scale and can also explain the

Tevatron dimuon anomaly.

1 From ancient Greek αιδνoς (dark, unseen) and γǫνǫσις (generation, origin).

∗blennow@mppmu.mpg.de
†dasgupta.10@osu.edu
‡enfmarti@mppmu.mpg.de
§nuria@ific.uv.es

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura

https://core.ac.uk/display/71038102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1009.3159v2
mailto:blennow@mppmu.mpg.de
mailto:dasgupta.10@osu.edu
mailto:enfmarti@mppmu.mpg.de
mailto:nuria@ific.uv.es


I. INTRODUCTION

The building blocks of the Universe are reasonably well-known from a cosmological point

of view [1]. In particular, we now know that about 73 % of the energy density is in the form

of dark energy and causes the accelerated expansion of the Universe while the remaining

27 % is composed of matter. Baryonic matter makes up only 5 %, while about five times as

much is in the form of a non-luminous weakly interacting species, dubbed “Dark Matter”

(DM). While this cosmological book-keeping is well developed, the particle nature of DM

continues to be one of the most important open questions of particle physics [2].

In this context, much attention has been devoted to crafting well-motivated and viable

theories of DM. The most popular candidates for DM are weakly interacting massive parti-

cles (WIMPs). WIMPs arise naturally in theories, such as supersymmetry, which provide a

solution to the hierarchy problem and include a “natural” DM candidate [3] once a discrete

symmetry, e.g., R-parity, is introduced, so that the least massive particle charged under the

new symmetry is stable or very long lived [4]. This kind of DM comes with the WIMP

miracle, i.e., the correct interaction cross-section to thermally produce the density of DM

in the early Universe [5]. In hindsight, this becomes the most appealing feature of such

DM. The same is true for extra-dimensional models where KK parity ensures the stability

of the DM candidates [6, 7]. In this scenario, the closeness of the dark matter and baryonic

energy densities is merely a coincidence, since they are produced by unrelated mechanisms.

However, their similarity suggests that they originated from the same source. This is the

case in models of asymmetric dark matter (ADM), a relatively old idea [8–11] which has

been exploited in several models for DM generation [12–26] and has recently received a ris-

ing interest [27–42]. In ADM models, the DM is made up of charge-neutral Dirac fermions,

just like baryonic matter and unlike the SUSY neutralino which is a Majorana fermion.

Thus, the DM we see today is not generated thermally in the early Universe, but through a

particle-antiparticle asymmetry in its production mechanism tied to the production of ordi-

nary matter, giving rise to similar number densities for ordinary matter and DM. Therefore,

models of ADM often predict DM masses of O(1) GeV, except in instances where the ADM

number density can be Boltzmann suppressed or tuned to result in a larger mass (see, e.g.,

Ref. [26, 28, 40]). The phenomenology of ADM is therefore quite different from that of a

thermal DM relic. In particular, the prospects of indirect detection of DM in these mod-
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els are suppressed, since the DM does not annihilate if only an asymmetric component is

present. Nevertheless, there could still be some indirect effects, such as the effect of accreting

ADM in the core of stars [32, 35].

As was stressed in Ref. [11], any process that creates a baryon or lepton asymmetry could

be intimately tied to the creation of ADM as well. In most ADM models, this production

of a DM asymmetry is seeded by the observed baryon asymmetry and transferred to the

dark sector. However, there has been a recent interest in the opposite mechanism, namely,

the creation of a DM asymmetry that is subsequently converted partially into the SM [36–

38, 41]. In this work, we instead assume that the asymmetries in both baryons and DM

are created simultaneously by the same processes, as suggested by their similar abundances.

First, a lepton asymmetry from the decay of heavy right-handed neutrinos, as in leptogenesis

[43], is induced and then this lepton number is partially converted into both baryon and

DM numbers through new sphaleron processes. In order to achieve this, we will assume that

there is an additional non-abelian gauge symmetry groupG, under which both the DM sector

and the SM fermions are charged. For definiteness, we will consider an additional SU(2)

symmetry, but other symmetry groups could also fulfill our purposes. This extra gauge

symmetry could arise from some unified theory at higher scales, although this is not required.

Apart from the right-handed neutrinos and the extra gauge symmetry (spontaneously broken

by scalar SM singlets), we only need to introduce new fermion fields X , that are singlets

under the SM gauge group but couple to the new gauge symmetry, and will provide the DM

candidates.

We include a QCD-like gauge interaction for the DM fermions that prevents their mixing

with neutrinos, ensuring their stability without any ad hoc discrete symmetry. The similarity

with the SM QCD interaction is also suggestive, given the similar masses of baryons and

DM required to fit the observed energy densities. As the DM is essentially composed of dark

baryons, it scatters with itself through the QCD-like gauge interaction. This self-interaction

can be quite large and leads to almost spherical DM halos in galaxies, in somewhat better

agreement with data, compared to WIMPs [44]. The current best limit on the interaction

strength comes from observed ellipticities of DM halos of galaxies [45]. However, limits from

colliding galaxy clusters, though slightly weaker, are thought to be more robust. These

observations tell us that the QCD-like gauge interaction cannot be much stronger than that

between baryons.
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II. AIDNOGENESIS

As stated in the introduction, a general feature of ADM models is that the production

mechanisms for the DM are somehow related to the baryon asymmetry in order to obtain

similar abundances. For example, early proposals [9–11] include charging light DM fermions

under SU(2)L in order to fix its abundance together with the baryon and lepton asymmetries

as a result of the thermal equilibrium in the early Universe [46, 47]. If dark and baryonic

matter have similar number densities, present cosmology data favour rather light values

of the DM fermions mass. Thus, collider constraints rule out the possibility of DM being

part of a (pure) SU(2)L multiplet. We instead propose that the DM abundance can be

the result of sphaleron processes due to a new gauge symmetry that connects the DM and

SM sectors. In such a setting, we extend the SM gauge group by an additional non-abelian

gauge symmetry G under which the DM is charged. In order to generate a DM number X ,

related to additional fermions introduced in the theory, we also need to charge some of the

SM fermions under this gauge group, generally leading to the associated sphalerons violating

the global charges such that ∆X = ∆B/k1 = ∆L/k2, where ki are constants. Since the extra

sphalerons are responsible for the creation of the DM number, we will refer to them as “dark

sphalerons” and to the process of the conversion of lepton or baryon number into DM number

as “aidnogenesis”. Together with the SM sphalerons, which satisfy ∆B = ∆L and ∆X = 0,

this will result in a single conserved quantity (k2 − k1)X + B − L, when both sphalerons

are active. This quantity is what needs to be generated in the early Universe in order to

accommodate both the baryon and DM numbers and is the equivalent to B − L in models

of leptogenesis. In the model given below, we will assume that leptogenesis produces an

initial L number, which is then partially transformed into B and X by sphaleron processes,

we therefore have baryogenesis and aidnogenesis via leptogenesis.

To compute the abundance of B and X , we must first write down the equilibrium

equations for the chemical potentials of different particle species when both SM and dark

sphalerons are active. These equations will be dependent on the specific extension of the

SM, but generally lead to a relation of the form

X

B − L
= r, (1)

where r is an O(1) constant. Once the additional sphalerons become inactive, the SM

sphalerons will continue to act in the standard way, leading to the equilibrium relation
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B = 28(B − L)/79 (in the case of three fermion generations and one Higgs doublet in the

standard sector), while conserving X and B − L. Thus, for the final relation between the

baryon and DM numbers, we obtain

X

B
=

79

28
r. (2)

This results in a prediction for the DM mass through

ΩB

ΩX

=
ρB
ρX

=
mp

mDM

∣

∣

∣

∣

B

X

∣

∣

∣

∣

≃ 0.2

⇒ mDM ≃ 5mp

28

79|r| ≃ 1.77
mp

|r| . (3)

Thus, with r being O(1), we would expect the DM mass to be close to the proton mass. It

should be noted that the DM mass is here the mass of the lightest of the additional fermions

which is stable, since DM number is conserved at the Lagrangian level.

III. AN ILLUSTRATIVE MODEL

From the previous section, the question of whether or not aidnogenesis can be achieved in

a specific model realization naturally follows. In this section, we will give an example of such

realization in a concrete model and compute the corresponding DM density and properties.

For this specific realization, we extend the SM gauge group with an additional SU(2)H ×
SU(3)DC , where the SU(2)H is a horizontal symmetry introduced to provide the dark

sphalerons. We have chosen an SU(2)H for the simplicity of the discussion but, in prin-

ciple, other non-abelian gauge symmetries encompassing all three fermion generations could

be considered as well to address the flavor puzzle. The additional dark color (DC) group

SU(3)DC is a color-like gauge interaction in the dark sector. The DM candidate in this

model is a charge neutral SU(3)DC baryon. The fermionic field content in the model is

given in Tab. I with the corresponding charges. Notice that the choice of which fermion

generations form the SU(2)H doublets is arbitrary and only affects the constraints that can

be set with present data on flavour changing neutral current (FCNC) processes on the scale

at which the symmetry is broken, but not the generation of the baryon and DM asymmetry.

In Tab. I the SU(2)H doublets are composed from the fermions of the first two generations,

for which the present bounds are strongest, but other possibilities will be briefly discussed

in Sec. IV. Notice that the only fermion singlet is the right-handed neutrino, for which a
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Majorana mass is allowed and will be assumed in order to have a see-saw mechanism [48–50]

for neutrino masses and a lepton number asymmetry in their decay that can seed baryo- and

aidnogenesis. This is also consistent with having an even number of SU(2)H doublets, as

required by the cancellation of the Witten anomaly [51] for the SU(2) groups. For the same

reason, the left-handed components of the DM fermions should not form SU(2)L doublets.

Moreover, since the DM fermions are Dirac, we can define a global DM number X , that will

be conserved at the Lagrangian level just as the baryon number B.

We further assume that the scalar sector is such that it can provide the required mass

terms for the fermions, either directly or through higher-dimensional operators, after the

breaking of both, the electroweak and the SU(2)H symmetries. For instance, a minimal re-

alization consists of an extra SU(2)H doublet, besides the SM Higgs, with Yukawa couplings

given in terms of effective d = 5 operators such as

Od=5 = cαLHΦHΦ
†
LLLα, (4)

where ΦH,L is the SU(2)H,L Higgs. After breaking of the SU(2)H symmetry, this reproduces

the SM Yukawa terms. Just like the d = 5 Weinberg operator for neutrino masses, such

operators can be generated in several different ways. The relevant phenomenological aspects

of the model are independent of the scalar sector, so we shall not discuss it in more detail.

In this model, which is free of gauge anomalies, dark sphalerons satisfy ∆B/2 = ∆X =

∆L, while the SM sphalerons satisfy ∆B = ∆L as usual, resulting in an overall conservation

of B − X − L at scales where both sphalerons are active and conservation of both B − L

and X separately in the intermediate regime, where only the dark sphalerons are turned

off. Thus, if an initial L asymmetry is produced in the decay of the heavy Majorana right-

handed neutrinos, both kinds of sphalerons will try to erase it. However, since B −X − L

is exactly conserved by the combination of both sphalerons, net B and X asymmetries will

be induced. In order to obtain the precise ratios between the final B, L and X asymmetries

the equilibrium equations for the chemical potentials have to be written down. We find that

r = −22

79
(5)

when both sphaleron processes are in equilibrium. Incidentally, since the DM fields are not

charged under any of the SM groups, the equilibrium equations for these groups are identical
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Field Y L H C DC

LLα (ναL, ℓαL) −1/2 2 1 1 1

LH (eR, µR) −1 1 2 1 1

τR −1 1 1 1 1

ναR 0 1 1 1 1

QαL (uαL, dαL) 1/6 2 1 3 1

Qu
H (uR, cR) 2/3 1 2 3 1

Qd
H (dR, sR) −1/3 1 2 3 1

tR 2/3 1 1 3 1

bR −1/3 1 1 3 1

XH (x1R, x
2
R) 0 1 2 1 3

x3R, x
α
L 0 1 1 1 3

TABLE I: Fermion field content for our illustrative model and the corresponding charge assign-

ments. Whenever a field has an index α, the model contains three copies of this field. Note that

the assignment of putting particular generations in the SU(2)H doublets is arbitrary.

before and after the SU(2)H freeze-out. For the final DM to baryon ratio, we obtain

X

B
−→ −11

14
. (6)

Therefore, in order to accommodate the observed values of ΩX and ΩB, we must have

mDM ≃ mB

14ΩX

11ΩB

= 5.94± 0.42 GeV, (7)

including the errors of the WMAP7 measurementes [1]. This value is in the low mass regime

between 5 and 10 GeV favored by the claimed DM signals of the DAMA/LIBRA [52] and

CoGeNT [53] collaborations. In particular it is strikingly close to the ∼ 7 GeV required

to consistently describe both signals and is within the 99 % confidence level for the mass

obtained in Ref. [54].

In order to obtain the prediction for the DM mass of Eq. (7) we have introduced a

scalar doublet of the SU(2)H symmetry and considered the necessary operators involving

this scalar doublet and the Higgs field in order to obtain Yukawa couplings for all fermions.

Thus, for the first two generations of charged SM fermions, the Yukawa couplings become

7



effective d = 5 operators. However, we find that the prediction of Eq. (7) is fairly indepen-

dent of the particles that mediate the d = 5 operators as well as the extra SU(2)H scalar

multiplets introduced to break the horizontal symmetry and generate Yukawa couplings.

Indeed, if a heavy mediator to induce the effective d = 5 operator is considered and the

effective operator is opened into renormalizable ones, solving the equilibrium equations for

the chemical potential of the heavy particle, the same equation implied by the original d = 5

operator is obtained. Thus, if the mediator does not carry baryon or DM number (being for

instance a scalar) or if it is heavy enough to be integrated out of the theory at the scale at

which baryogenesis and aidnogenesis take place, Eq. (7) would not be modified. Regarding

the details of the scalar sector introduced to break the SU(2)H symmetry, we find that the

solution of the equilibrium equations imply that the chemical potentials of both the gauge

bosons associated to the SU(2)H symmetry and the scalar multiplets introduced to break it

are zero. Thus, the chemical potentials for the particles of the different generations are the

same. If different scalar multiplets were assumed instead, setting their chemical potentials

to zero would also be a solution to the equilibrium equations and thus Eq. (7) seems to be

independent also from the details of the SU(2)H symmetry breaking.

Note that our model has three generations of DM fermions, in analogy with the observed

fermions of the SM. However, the third generation of DM fields (i.e., x3) does not play

an active role and can be removed from the model. This would result in the DM number

density being reduced by a factor 2/3 and thus predict mDM ≃ 9 GeV.

IV. CONSTRAINTS ON THE MODEL

The first requisite that has to be met for successful generation of the baryon and dark

matter asymmetries via leptogenesis, is that the SU(2)H sphalerons reach thermal equilib-

rium before the phase transition occurs and suppresses their rate. Thus, the sphaleron rate

should be greater than the Hubble rate, leading to a lower bound on the SU(2)H coupling

constant as a function of the temperature above which equilibrium should be achieved:

α4
H =

(

g2H
4π

)4

& 10
T

MP l

. (8)

On the other hand, a lower bound on the strength of the SU(2)H interaction at lower

energies can be derived from the requirement that the thermally produced symmetric com-
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ponent of dark matter is transfered to the SM fast enough. Indeed, as with any field which

is kept in thermal equilibrium, the ADM candidate will have a thermal abundance of both

particles and anti-particles in the early Universe. In order for the DM to become asym-

metric, there must exist interactions through which this symmetric thermal abundance can

be effectively annihilated once the ADM falls out of thermal equilibrium. In our example

model, this is achieved by the strong SU(3)DC interactions connecting the symmetric part

of the DM fields into dark SU(3)DC mesons which can decay to SM particles via SU(2)H

gauge bosons. Analogously to pion decays in the SM, the dark meson decays will require

a chirality flip of the SM fermions they decay into. To estimate the decay rate of the dark

mesons we will assume that the dominant decay channel is either to two muons or a tau and

a lighter lepton and thus proportional to the muon or tau mass.

In order not to disturb the standard history of the Universe, the SU(3)DC mesons (which

constitute a large matter component) must decay sufficiently fast into SM fermions so that

they are no longer present during big bang nucleosynthesis (BBN). Thus, the lifetime of the

mesons must be significantly less than one second. Since the horizontal gauge bosons could

also induce FCNC processes in the SM sector, bounds can be derived on the related effective

SU(2)H Fermi constant GH
F =

√
2g2H/8M

2
H . Naturally, such bounds are stronger if the two

SM generations involved contain the lightest fermions of each type (e.g., e and µ rather

than µ and τ), since these FCNC have stronger experimental constraints. In Fig. 1 we show

contours for the lower bound on GH
F such that the lifetime of the dark mesons is smaller

than 10−2 s as a function of the dark meson mass mH and decay constant fH . Notice that

the values of these two quantities will depend on the strength of the SU(3)DC interaction

as well as the masses of the dark matter fermions. In any case the “dark meson” masses

should be heavier than ∼ 100 MeV so that they decay before BBN but lighter than the

“dark baryon” mass so that the symmetric component is stored mainly in mesons and not

baryons and antibaryons, this corresponds to the maximum value of mH depicted in Fig. 1.

If the dominant decay channel is to a muon pair (left panel), then the bound is typically

of O(10−10) GeV−2, while the bounds are about an order of magnitude weaker for decays

into a tau and a lighter lepton (right panel). In this last case the decay can only happen if

mH > mτ which corresponds to the horizontal asymptote.

On the other hand, the strongest constraint on GH
F from FCNC stems from the bound on

the decay K → eµ and implies that GH
F < 3.6 ·10−12 GeV−2, which would cause tension with
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FIG. 1: Contours for the lower bound on GH
F such that the lifetime of the dark mesons is smaller

than 10−2 s as a function of the dark meson mass mH and decay constant fH . Left panel for

a dominant decay into muons depicts the contours for GH
F > 10−9, 5 · 10−10, 10−10 GeV−2 and

5 · 10−11 from the bottom of the plot to the top. Right panel for a dominant decay into a tau and

a lighter lepton depicts the contours for GH
F > 10−10, 5 · 10−11, 10−11 and 5 · 10−12 GeV−2 from

the bottom of the plot to the top.

the lower bounds derived in Fig. 1. However, this constraint does not apply if the horizontal

symmetry is broken in stages. For example, this may be achieved by first breaking the

SU(2)H to U(1)H by a real scalar triplet acquiring a vacuum expectation value along the

σ3 direction and giving large masses to the flavor changing gauge bosons while leaving the

flavor conserving one massless. This procedure is similar to Georgi and Glashow’s model of

electroweak interactions, which did not include neutral currents [55]. The remaining flavor

diagonal U(1)H can be subsequently broken at a scale low enough to obtain interactions

of the strength required for the dark mesons to decay into two muons. In this case the

dominant decay channel of the dark mesons could be to two muons and the constraints on

the left-handed panel of Fig. 1 would apply. Reconciling this scenario with the lower bound

on gH from Eq. (8) is easy since the scale of the SU(2)H symmetry breaking is unrelated

to the mass of the flavour-conserving Z ′, for instance with gH = 0.5 the sphalerons would

reach thermal equilibrium at T . 1011 GeV and the first stage of symmetry breaking, which

would freeze out the sphalerons, should occur above Λ & 105 GeV.
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An interesting alternative would be to couple the two heaviest SM fermion generations

to the SU(2)H and having the scalar triplet acquire its vev along the σ1 direction. In this

case the residual U(1)H would still induce FCNC in the t − c, b − s and τ − µ sectors but

the constraints are in this case weaker and allow for sufficiently fast dark meson decays.

Indeed, such a U(1)H with strength GH
F = 7 · 10−11 GeV−2 is allowed by present data and

would contribute to CP violation in the Bs system, accommodating the observed dimuon

anomaly at Tevatron [56]. In this case the dark mesons would decay into a tau and a muon

and the constraints depicted in the right panel of Fig. 1 would apply. In this scenario, it is

also possible to identify the scale of the SU(2)H symmetry breaking with the mass of the

flavour-changing Z ′ contributing to Bs mixing. In combination with Eq. (8) this would imply

that gH & 0.06 and Λ & 2.7 TeV, for the dark sphalerons to enter in thermal equilibrium at

T & Λ.

V. PHENOMENOLOGICAL PROSPECTS

The detection prospects for this kind of DM mainly come from three directions: direct

detection through nuclear recoil, production at colliders, and through FCNCs. The most

interesting prospects are from direct detection by observing the nuclear recoil of a DM

particle hitting a nucleon. Given that the cross-section goes as GH2
F E2, where E is an energy

at the typical scale of the DM mass in our model, we predict a ADM-nucleon cross-section

σ & 10−46 cm2, where we have used the dark meson lifetime constraint GH
F & 10−10 GeV−2.

It is worth pointing out that generally the sensitivity of direct detection experiments is

weaker for the low DM mass regime favored by ADM. In this regime, the present bounds set

on the spin-independent cross section by the XENON100 [57] and CDMS [58] collaborations

are O(10−40) cm2. However, proposed upgrades to these experiments or future experiments

could probe most of the allowed range.

From the collider perspective, the best present bounds come from the non-observation

of the Z ′ associated to the U(1)H . The results from LEP-II suggest that, if the Z ′ at

low energies couples with full strength to electrons and other charged leptons then GH
F <

5.14 · 10−8 GeV−2 [59], while the present limits from Tevatron are subdominant. This

would be in tension with the interpretation of the DAMA and CoGeNT experiments that

require GH
F ∼ 10−7GeV−2 [54]. These bounds could be evaded if the SU(2)H gauge symmetry
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couples mainly to the heavier charged lepton generations. In any case, the bound is about

two or three orders of magnitude above the dark meson lifetime constraint. There is scope

to improve this at LHC, where the limits can be improved by almost 30 % in some regions

of the gZ′/MZ′ plane. On the other hand, future LHC constraints could be derived from a

somewhat general approach, as shown in Ref. [60], where one could explore cross-sections

well-below 10−41 cm2 and almost all the way to 10−46 cm2, depending on the details of the

coupling of DM to quarks.

Furthermore, FCNC processes are generic features of this type of model. However, the

interaction strength for these depends on the specifics of symmetry breaking and can be

either strong enough to be already making an impact at present experiments (i.e., the

Tevatron dimuon anomaly) or so weak that it is unobservable for all practical purposes (i.e.,

the symmetry is broken in such a way that only a flavor diagonal interaction remains at

lower energies). If FCNCs are discovered at Super-B factories [61], the flavor symmetry

breaking structure could be probed.

VI. SUMMARY AND CONCLUSIONS

In this work, we have discussed the prospects of generating asymmetric dark matter

(ADM) from an initial lepton asymmetry through the sphalerons of a new non-abelian gauge

group. The initial lepton asymmetry is taken to be the result of a leptogenesis mechanism.

As an example of a model where this occurs, we have discussed an anomaly free model, in

which the Standard Model (SM) is extended by dark matter fermion fields and an additional

horizontal SU(2) gauge symmetry. In addition, the model contains a color like SU(3) gauge

interaction in the dark sector, preventing the mixing with the right-handed neutrinos and

requiring the dark matter to be in the form of charge neutral baryon-like states. The mass of

these baryon-like states is predicted by comparing the number densities of baryons and dark

baryons with the ratio ΩX/ΩB = 4.98 ± 0.35 and the result is mDM = (5.94 ± 0.42) GeV.

The similarity with the SM QCD interaction is also suggestive, given the similar masses of

baryons and DM required to fit the observed energy densities. The SU(3) self-interaction

can be quite large and leads to almost spherical DM halos in galaxies, in somewhat better

agreement with data, compared to WIMPs.

In order to get rid of the thermally produced symmetric component of the dark matter
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before big bang nucleosynthesis (BBN), it is required that the dark mesons decay into SM

fields with a coupling constant of & 10−10 GeV−2. Thus, the predictions of this model

are suggestively close to the values favoured by a consistent description of the DAMA and

CoGeNT experiments, which require mDM ∼ 7 GeV and a DM-baryon interaction with

strength ∼ GF/100.

In the particular realization we discussed, the additional chiral symmetry corresponding

to the dark sphalerons is a horizontal symmetry inspired by possible solutions to the flavor

puzzle and the Tevatron dimuon anomaly. It is beyond the scope of this work to build a full

model addressing these two problems in combination with dark matter generation. However,

the possibility of a connection between dark matter and the flavor puzzle is intriguing and

should be explored further.
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