63 research outputs found

    Detecting impacts of extreme events with ecological in situ monitoring networks

    Get PDF
    Extreme hydrometeorological conditions typically impact ecophysiological processes of terrestrial vegetation. Satellite based observations of the terrestrial biosphere provide an important reference for detecting and describing the spatiotemporal development of such events. However, in-depth investigations of ecological processes during extreme events require additional in-situ observations. The question is if the density of existing ecological in-situ networks is sufficient for analyzing the impact of extreme events, or what are expected event detection rates of ecological in-situ networks of a given size. To assess these issues, we build a baseline of extreme reductions in the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), identified by a new event detection method tailored to identify extremes of regional relevance. We then investigate the event detection success rates of hypothetical networks of varying sizes. Our results show that large extremes can be reliably detected with relatively small network, but also reveal a linear decay of detection probabilities towards smaller extreme events in log-log space. For instance, networks with ≈ 100 randomly placed sites in Europe yield a ≥ 90 % chance of detecting the largest 8 (typically very large) extreme events; but only a ≥ 50 % chance of capturing the largest 39 events. These finding are consistent with probability-theoretic considerations, but the slopes of the decay rates deviate due to temporal autocorrelation issues and the exact implementation of the extreme event detection algorithm. Using the examples of AmeriFlux and NEON, we then investigate to what degree ecological in-situ networks can capture extreme events of a given size. Consistent with our theoretic considerations, we find that today's systematic network designs (i.e. NEON) reliably detects the largest extremes. But the extreme event detection rates are not higher than they would be achieved by randomly designed networks. Spatiotemporal expansions of ecological in-situ monitoring networks should carefully consider the size distribution characteristics of extreme events if the aim is also to monitor their impacts in the terrestrial biosphere

    Gap-filling eddy covariance methane fluxes : Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands

    Get PDF
    Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting halfhourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).Peer reviewe

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe
    • …
    corecore