315 research outputs found

    Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB

    Full text link
    Supersymmetric models based on anomaly-mediated SUSY breaking (AMSB) generally give rise to a neutral wino as a WIMP cold dark matter (CDM) candidate, whose thermal abundance is well below measured values. Here, we investigate four scenarios to reconcile AMSB dark matter with the measured abundance: 1. non-thermal wino production due to decays of scalar fields ({\it e.g} moduli), 2. non-thermal wino production due to decays of gravitinos, 3. non-thermal wino production due to heavy axino decays, and 4. the case of an axino LSP, where the bulk of CDM is made up of axions and thermally produced axinos. In cases 1 and 2, we expect wino CDM to constitute the entire measured DM abundance, and we investigate wino-like WIMP direct and indirect detection rates. Wino direct detection rates can be large, and more importantly, are bounded from below, so that ton-scale noble liquid detectors should access all of parameter space for m_{\tz_1}\alt 500 GeV. Indirect wino detection rates via neutrino telescopes and space-based cosmic ray detectors can also be large. In case 3, the DM would consist of an axion plus wino admixture, whose exact proportions are very model dependent. In this case, it is possible that both an axion and a wino-like WIMP could be detected experimentally. In case 4., we calculate the re-heat temperature of the universe after inflation. In this case, no direct or indirect WIMP signals should be seen, although direct detection of relic axions may be possible. For each DM scenario, we show results for the minimal AMSB model, as well as for the hypercharged and gaugino AMSB models.Comment: 29 pages including 13 figure

    Implications of Compressed Supersymmetry for Collider and Dark Matter Searches

    Full text link
    Martin has proposed a scenario dubbed ``compressed supersymmetry'' (SUSY) where the MSSM is the effective field theory between energy scales M_{\rm weak} and M_{\rm GUT}, but with the GUT scale SU(3) gaugino mass M_3<< M_1 or M_2. As a result, squark and gluino masses are suppressed relative to slepton, chargino and neutralino masses, leading to a compressed sparticle mass spectrum, and where the dark matter relic density in the early universe may be dominantly governed by neutralino annihilation into ttbar pairs via exchange of a light top squark. We explore the dark matter and collider signals expected from compressed SUSY for two distinct model lines with differing assumptions about GUT scale gaugino mass parameters. For dark matter signals, the compressed squark spectrum leads to an enhancement in direct detection rates compared to models with unified gaugino masses. Meanwhile, neutralino halo annihilation rates to gamma rays and anti-matter are also enhanced relative to related scenarios with unified gaugino masses but, depending on the halo dark matter distribution, may yet be below the sensitivity of indirect searches underway. In the case of collider signals, we compare the rates for the potentially dominant decay modes of the stop_1 which may be expected to be produced in cascade decay chains at the LHC: \tst_1\to c\tz_1 and \tst_1\to bW\tz_1. We examine the extent to which multilepton signal rates are reduced when the two-body decay mode dominates. For the model lines that we examine here, the multi-lepton signals, though reduced, still remain observable at the LHC.Comment: 22 pages including 24 eps figure

    Disruption of a structurally important extracellular element in the Glycine Receptor leads to decreased synaptic integration and signaling resulting in Severe Startle Disease

    Get PDF
    Functional impairments or trafficking defects of inhibitory glycine receptors (GlyRs) have been linked to human hyperekplexia/startle disease and autism spectrum disorders. We found that a lack of synaptic integration of GlyRs, together with disrupted receptor function, is responsible for a lethal startle phenotype in a novel spontaneous mouse mutant shaky, caused by a missense mutation, Q177K, located in the extracellular β8–β9 loop of the GlyR α1 subunit. Recently, structural data provided evidence that the flexibility of the β8–β9 loop is crucial for conformational transitions during opening and closing of the ion channel and represents a novel allosteric binding site in Cys-loop receptors. We identified the underlying neuropathological mechanisms in male and female shaky mice through a combination of protein biochemistry, immunocytochemistry, and both in vivo and in vitro electrophysiology. Increased expression of the mutant GlyR α1Q177K subunit in vivo was not sufficient to compensate for a decrease in synaptic integration of α1Q177Kβ GlyRs. The remaining synaptic heteromeric α1Q177Kβ GlyRs had decreased current amplitudes with significantly faster decay times. This functional disruption reveals an important role for the GlyR α1 subunit β8–β9 loop in initiating rearrangements within the extracellular–transmembrane GlyR interface and that this structural element is vital for inhibitory GlyR function, signaling, and synaptic clustering

    Collider and Dark Matter Searches in Models with Mixed Modulus-Anomaly Mediated SUSY Breaking

    Get PDF
    We investigate the phenomenology of supersymmetric models where moduli fields and the Weyl anomaly make comparable contributions to SUSY breaking effects in the observable sector of fields. This mixed modulus-anomaly mediated supersymmetry breaking (MM-AMSB) scenario is inspired by models of string compactification with fluxes, which have been shown to yield a de Sitter vacuum (as in the recent construction by Kachru {\it et al}). The phenomenology depends on the so-called modular weights which, in turn, depend on the location of various fields in the extra dimensions. We find that the model with zero modular weights gives mass spectra characterized by very light top squarks and/or tau sleptons, or where M_1\sim -M_2 so that the bino and wino are approximately degenerate. The top squark mass can be in the range required by successful electroweak baryogenesis. The measured relic density of cold dark matter can be obtained via top squark co-annihilation at low \tan\beta, tau slepton co-annihilation at large \tan\beta or via bino-wino coannihilation. Then, we typically find low rates for direct and indirect detection of neutralino dark matter. However, essentially all the WMAP-allowed parameter space can be probed by experiments at the CERN LHC, while significant portions may also be explored at an e^+e^- collider with \sqrt{s}=0.5--1 TeV. We also investigate a case with non-zero modular weights. In this case, co-annihilation, A-funnel annihilation and bulk annihilation of neutralinos are all allowed. Results for future colliders are qualitatively similar, but prospects for indirect dark matter searches via gamma rays and anti-particles are somewhat better.Comment: 38 pages including 22 EPS figures; latest version posted to conform with published versio

    L-VRAP-a lunar volatile resources analysis package for lunar exploration

    Get PDF
    The Lunar Volatile Resources Analysis Package (L-VRAP) has been conceived to deliver some of the objectives of the proposed Lunar Lander mission currently being studied by the European Space Agency. The purpose of the mission is to demonstrate and develop capability; the impetus is very much driven by a desire to lay the foundations for future human exploration of the Moon. Thus, LVRAP has design goals that consider lunar volatiles from the perspective of both their innate scientific interest and also their potential for in situ utilisation as a resource. The device is a dual mass spectrometer system and is capable of meeting the requirements of the mission with respect to detection, quantification and characterisation of volatiles. Through the use of appropriate sampling techniques, volatiles from either the regolith or atmosphere (exosphere) can be analysed. Furthermore, since L-VRAP has the capacity to determine isotopic compositions, it should be possible for the instrument to determine the sources of the volatiles that are found on the Moon (be they lunar per se, extra-lunar, or contaminants imparted by the mission itself

    Collider and Dark Matter Phenomenology of Models with Mirage Unification

    Get PDF
    We examine supersymmetric models with mixed modulus-anomaly mediated SUSY breaking (MM-AMSB) soft terms which get comparable contributions to SUSY breaking from moduli-mediation and anomaly-mediation. The apparent (mirage) unification of soft SUSY breaking terms at Q=mu_mir not associated with any physical threshold is the hallmark of this scenario. The MM-AMSB structure of soft terms arises in models of string compactification with fluxes, where the addition of an anti-brane leads to an uplifting potential and a de Sitter universe, as first constructed by Kachru {\it et al.}. The phenomenology mainly depends on the relative strength of moduli- and anomaly-mediated SUSY breaking contributions, and on the Higgs and matter field modular weights, which are determined by the location of these fields in the extra dimensions. We delineate the allowed parameter space for a low and high value of tan(beta), for a wide range of modular weight choices. We calculate the neutralino relic density and display the WMAP-allowed regions. We show the reach of the CERN LHC and of the International Linear Collider. We discuss aspects of MM-AMSB models for Tevatron, LHC and ILC searches, muon g-2 and b->s \gamma branching fraction. We also calculate direct and indirect dark matter detection rates, and show that almost all WMAP-allowed models should be accessible to a ton-scale noble gas detector. Finally, we comment on the potential of colliders to measure the mirage unification scale and modular weights in the difficult case where mu_mir>>M_GUT.Comment: 34 pages plus 42 EPS figures; version with high resolution figures is at http://www.hep.fsu.edu/~bae

    Mixed Higgsino Dark Matter from a Large SU(2) Gaugino Mass

    Full text link
    We observe that in SUSY models with non-universal GUT scale gaugino mass parameters, raising the GUT scale SU(2) gaugino mass |M_2| from its unified value results in a smaller value of -m_{H_u}^2 at the weak scale. By the electroweak symmetry breaking conditions, this implies a reduced value of \mu^2 {\it vis \`a vis} models with gaugino mass unification. The lightest neutralino can then be mixed Higgsino dark matter with a relic density in agreement with the measured abundance of cold dark matter (DM). We explore the phenomenology of this high |M_2| DM model. The spectrum is characterized by a very large wino mass and a concomitantly large splitting between left- and right- sfermion masses. In addition, the lighter chargino and three light neutralinos are relatively light with substantial higgsino components. The higgsino content of the LSP implies large rates for direct detection of neutralino dark matter, and enhanced rates for its indirect detection relative to mSUGRA. We find that experiments at the LHC should be able to discover SUSY over the portion of parameter space where m_{\tg} \alt 2350-2750 ~GeV, depending on the squark mass, while a 1 TeV electron-positron collider has a reach comparable to that of the LHC. The dilepton mass spectrum in multi-jet + \ell^+\ell^- + \eslt events at the LHC will likely show more than one mass edge, while its shape should provide indirect evidence for the large higgsino content of the decaying neutralinos.Comment: 36 pages with 26 eps figure

    Mixed Higgsino Dark Matter from a Reduced SU(3) Gaugino Mass: Consequences for Dark Matter and Collider Searches

    Get PDF
    In gravity-mediated SUSY breaking models with non-universal gaugino masses, lowering the SU(3) gaugino mass |M_3| leads to a reduction in the squark and gluino masses. Lower third generation squark masses, in turn, diminish the effect of a large top quark Yukawa coupling in the running of the higgs mass parameter m_{H_u}^2, leading to a reduction in the magnitude of the superpotential mu parameter (relative to M_1 and M_2). A low | mu | parameter gives rise to mixed higgsino dark matter (MHDM), which can efficiently annihilate in the early universe to give a dark matter relic density in accord with WMAP measurements. We explore the phenomenology of the low |M_3| scenario, and find for the case of MHDM increased rates for direct and indirect detection of neutralino dark matter relative to the mSUGRA model. The sparticle mass spectrum is characterized by relatively light gluinos, frequently with m(gl)<<m(sq). If scalar masses are large, then gluinos can be very light, with gl->Z_i+g loop decays dominating the gluino branching fraction. Top squarks can be much lighter than sbottom and first/second generation squarks. The presence of low mass higgsino-like charginos and neutralinos is expected at the CERN LHC. The small m(Z2)-m(Z1) mass gap should give rise to a visible opposite-sign/same flavor dilepton mass edge. At a TeV scale linear e^+e^- collider, the region of MHDM will mean that the entire spectrum of charginos and neutralinos are amongst the lightest sparticles, and are most likely to be produced at observable rates, allowing for a complete reconstruction of the gaugino-higgsino sector.Comment: 35 pages, including 26 EPS figure

    What makes for effective feedback: staff and student perspectives

    Get PDF
    Since the early 2010s the literature has shifted to view feedback as a process that students do where they make sense of information about work they have done, and use it to improve the quality of their subsequent work. In this view, effective feedback needs to demonstrate effects. However, it is unclear if educators and students share this understanding of feedback. This paper reports a qualitative investigation of what educators and students think the purpose of feedback is, and what they think makes feedback effective. We administered a survey on feedback that was completed by 406 staff and 4514 students from two Australian universities. Inductive thematic analysis was conducted on data from a sample of 323 staff with assessment responsibilities and 400 students. Staff and students largely thought the purpose of feedback was improvement. With respect to what makes feedback effective, staff mostly discussed feedback design matters like timing, modalities and connected tasks. In contrast, students mostly wrote that high-quality feedback comments make feedback effective – especially comments that are usable, detailed, considerate of affect and personalised to the student’s own work. This study may assist researchers, educators and academic developers in refocusing their efforts in improving feedbac

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore