We observe that in SUSY models with non-universal GUT scale gaugino mass
parameters, raising the GUT scale SU(2) gaugino mass |M_2| from its unified
value results in a smaller value of -m_{H_u}^2 at the weak scale. By the
electroweak symmetry breaking conditions, this implies a reduced value of \mu^2
{\it vis \`a vis} models with gaugino mass unification. The lightest neutralino
can then be mixed Higgsino dark matter with a relic density in agreement with
the measured abundance of cold dark matter (DM). We explore the phenomenology
of this high |M_2| DM model. The spectrum is characterized by a very large wino
mass and a concomitantly large splitting between left- and right- sfermion
masses. In addition, the lighter chargino and three light neutralinos are
relatively light with substantial higgsino components. The higgsino content of
the LSP implies large rates for direct detection of neutralino dark matter, and
enhanced rates for its indirect detection relative to mSUGRA. We find that
experiments at the LHC should be able to discover SUSY over the portion of
parameter space where m_{\tg} \alt 2350-2750 ~GeV, depending on the squark
mass, while a 1 TeV electron-positron collider has a reach comparable to that
of the LHC. The dilepton mass spectrum in multi-jet + \ell^+\ell^- + \eslt
events at the LHC will likely show more than one mass edge, while its shape
should provide indirect evidence for the large higgsino content of the decaying
neutralinos.Comment: 36 pages with 26 eps figure