We investigate the phenomenology of supersymmetric models where moduli fields
and the Weyl anomaly make comparable contributions to SUSY breaking effects in
the observable sector of fields. This mixed modulus-anomaly mediated
supersymmetry breaking (MM-AMSB) scenario is inspired by models of string
compactification with fluxes, which have been shown to yield a de Sitter vacuum
(as in the recent construction by Kachru {\it et al}). The phenomenology
depends on the so-called modular weights which, in turn, depend on the location
of various fields in the extra dimensions. We find that the model with zero
modular weights gives mass spectra characterized by very light top squarks
and/or tau sleptons, or where M_1\sim -M_2 so that the bino and wino are
approximately degenerate. The top squark mass can be in the range required by
successful electroweak baryogenesis. The measured relic density of cold dark
matter can be obtained via top squark co-annihilation at low \tan\beta, tau
slepton co-annihilation at large \tan\beta or via bino-wino coannihilation.
Then, we typically find low rates for direct and indirect detection of
neutralino dark matter. However, essentially all the WMAP-allowed parameter
space can be probed by experiments at the CERN LHC, while significant portions
may also be explored at an e^+e^- collider with \sqrt{s}=0.5--1 TeV. We also
investigate a case with non-zero modular weights. In this case,
co-annihilation, A-funnel annihilation and bulk annihilation of neutralinos are
all allowed. Results for future colliders are qualitatively similar, but
prospects for indirect dark matter searches via gamma rays and anti-particles
are somewhat better.Comment: 38 pages including 22 EPS figures; latest version posted to conform
with published versio