72 research outputs found

    Biogenic selenium nanoparticles synthesized by Stenotrophomonas maltophilia SeITE02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer

    Get PDF
    Increasing emergence of drug-resistant microorganisms poses a great concern to clinicians; thus, new active products are urgently required to treat a number of infectious disease cases. Different metallic and metalloid nanoparticles have so far been reported as possessing antimicrobial properties and proposed as a possible alternative therapy against resistant pathogenic microorganisms. In this study, selenium nanoparticles (SeNPs) synthesized by the environmental bacterial isolate Stenotrophomonas maltophilia SeITE02 were shown to exert a clear antimicrobial and antibiofilm activity against different pathogenic bacteria, either reference strains or clinical isolates. Antimicrobial and antibiofilm capacity seems to be strictly linked to the organic cap surrounding biogenic nanoparticles, although the actual role played by this coating layer in the biocidal action remains still undefined. Nevertheless, evidence has been gained that the progressive loss in protein and carbohydrate content of the organic cap determines a decrease in nanoparticle stability. This leads to an alteration of size and electrical properties of SeNPs along with a gradual attenuation of their antibacterial efficacy. Denaturation of the coating layer was proved even to have a negative effect on the antibiofilm activity of these nanoparticles. The pronounced antimicrobial efficacy of biogenic SeNPs compared to the denatured ones can - in first instance - be associated with their smaller dimensions. This study showed that the native organic coating layer of biogenic SeNPs functions in avoiding aggregation and maintaining electrostatic stability of the nanoparticles, thus allowing them to maintain efficient antimicrobial and antibiofilm capabilities

    Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection

    Get PDF
    Staphylococcus epidermidis is a permanent member of the normal human microbiota, commonly found on skin and mucous membranes. By adhering to tissue surface moieties of the host via specific adhesins, S. epidermidis is capable of establishing a lifelong commensal relationship with humans that begins early in life. In its role as a commensal organism, S. epidermidis is thought to provide benefits to human host, including out-competing more virulent pathogens. However, largely due to its capacity to form biofilm on implanted foreign bodies, S. epidermidis has emerged as an important opportunistic pathogen in patients receiving medical devices. S. epidermidis causes approximately 20% of all orthopedic device-related infections (ODRIs), increasing up to 50%in late-developing infections. Despite this prevalence, it remains underrepresented in the scientific literature, in particular lagging behind the study of the S. aureus. This review aims to provide an overview of the interactions of S. epidermidis with the human host, both as a commensal and as a pathogen. The mechanisms retained by S. epidermidis that enable colonization of human skin as well as invasive infection, will be described, with a particular focus upon biofilm formation. The host immune responses to these infections are also described, including how S. epidermidis seems to trigger low levels of pro-inflammatory cytokines and high levels of interleukin-10, which may contribute to the sub-acute and persistent nature often associated with these infections. The adaptive immune response to S. epidermidis remains poorly described, and represents an area which may provide significant new discoveries in the coming years

    Staphylococcal Vaccine Antigens related to biofilm formation

    No full text
    The number and frequency of multidrug-resistant (MDR) strains as a frequent cause of nosocomial infections have increased, especially for Methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis, in part due to device-related infections. The transition to antibiotic-resistance in related bacterial genes and the capability for immune escape have increased the sustainability of biofilms produced by these bacteria. The formation and changes in biofilms have been suggested as a target to prevent or treat staphylococcal infections. Thus, this study reviews the development of candidate staphylococcal vaccines by database searching, and evaluates the immunogenicity and efficacy profiles of bacterial components involved in biofilms. The literature suggests that using common staphylococcal vaccine antigens and multivalent vaccines should further enhance vaccine efficacy

    Narrowing the spectrum: the new frontier of precision antimicrobials

    Get PDF
    Editorial summary Antibiotics have become the standard of care for bacterial infections. However, rising rates of antibiotic-resistant infections are outpacing the development of new antimicrobials. Broad-spectrum antibiotics also harm beneficial microbial communities inhabiting humans. To combat antibiotic resistance and protect these communities, new precision antimicrobials must be engineered to target specific pathogens
    corecore