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Narrowing the spectrum: the new frontier
of precision antimicrobials
Alexandra E. Paharik1,3, Henry L. Schreiber IV1,3, Caitlin N. Spaulding1,2,3, Karen W. Dodson1,3

and Scott J. Hultgren1,3*

Editorial summary

Antibiotics have become the standard of care for
bacterial infections. However, rising rates of antibiotic-
resistant infections are outpacing the development of
new antimicrobials. Broad-spectrum antibiotics also
harm beneficial microbial communities inhabiting
humans. To combat antibiotic resistance and protect
these communities, new precision antimicrobials must
be engineered to target specific pathogens.

The microbiota, human health, and effects of
antibiotics
Alexander Fleming’s serendipitous discovery of the anti-
biotic penicillin in 1929, and the subsequent discovery of
streptomycin in 1943, ushered in the golden age of anti-
biotic discovery (1950s–1970s), in which approximately
half of the antibacterial drugs commonly used today
were discovered. Since this time period, antibiotics have
become the standard of care for bacterial infections. An-
tibiotics greatly reduce the morbidity and mortality of
infectious disease, and increase the quality and length of
life for billions of people. However, bacterial resistance
to antimicrobial drugs followed shortly after their devel-
opment, and is currently a global health crisis. A lack of
stewardship in the use of broad-spectrum antimicrobials,
both in healthcare and farming settings, has led to a pre-
cipitous increase in the occurrence of antibiotic-resistant
microorganisms [1]. Broad-spectrum antimicrobials ex-
pose the resident human microbiota (the collection of
microorganisms living in or on the human body) to se-
lective pressure, and failure to complete a course of anti-
biotics leads to incomplete eradication of infectious
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microorganisms and the development of resistance in
surviving pathogens. Commensal microbes of livestock
are also affected by the use of antibiotics, which are used
as growth promoters and as treatment for infections.
Foodborne transfer then allows resistant microorganisms
to colonize humans. Furthermore, bottlenecks in the dis-
covery and clinical testing of novel antibiotics have led
to a dearth of new antimicrobial drugs in the pipeline.
Thus, infections caused by drug-resistant bacteria are
currently outpacing the development of new antimicro-
bial drugs, and are threatening to again make common
infections a life-or-death problem.
An increasing number of studies reveal that the broad-

spectrum nature of antibiotics and their overuse have
long-lasting detrimental effects on the healthy human
microbiota, which has important functions in metabo-
lism, resistance to pathogens, and immune system deve-
lopment [2, 3]. For instance, the healthy gut microbiota
confers colonization resistance to invading pathogens
and plays vital roles in nutrient acquisition and modu-
lation of the immune system [2]. Disruption of the
community structure, and thus the function, of the
microbiota is known as dysbiosis, and has been linked to
multiple immunological and metabolic diseases [2, 3].
In young children, exposure to antibiotics could be

particularly damaging, as maturation of the gut micro-
biota community is crucial for healthy childhood deve-
lopment, impacting the growth of muscle, adipose, and
bone tissue, and the development of a healthy immune
system [3]. In adults, prolonged antibiotic use can also
result in decreased gut microbial diversity and increased
susceptibility to the gastrointestinal pathogen Clostrid-
ium difficile. When C. difficile infections are treated with
further antibiotics, recurrent infection rates can be as
high as 65% [4]. Thus, although broad-spectrum antibi-
otics play a critical role in saving lives and curing infec-
tion, their use can result in long-term, detrimental
effects and damage to the human microbiota.
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Precision antimicrobials: novel developments and
challenges
An alternative to broad-spectrum antibiotics is precision
antimicrobials. Precision antimicrobials function either
by i) specifically inhibiting a critical node in pathogen-
esis to disrupt maintenance and/or persistence of the
pathogen in the host, or by ii) specifically killing the
pathogenic organism with minimal off-target effects.
Such strategies are less likely to induce resistance than
broad-spectrum antimicrobials, since targeting key fac-
tors that are required for virulence in specific bacteria
limits the ways that bacteria can develop resistance while
maintaining virulence function. Furthermore, resident
microorganisms are less likely to develop resistance to
pathogen-targeted therapies as they do not employ the
same biochemical pathways.
Biomedical research is devoting great efforts to the de-

velopment of next-generation precision antimicrobials
for the world’s most prevalent pathogens, particularly for
those diseases with highly resistant pathogens. For in-
stance, the drug resistance index for urinary tract infec-
tions (UTIs) shows that the number of infections that
face treatment difficulties has increased since the mid-
2000s due to the rapid spread of resistance among
Gram-negative microorganisms, which includes Escheri-
chia coli, the primary cause of UTIs [5]. A recent study
by Spaulding et al. [6] exemplified how the use of preci-
sion antimicrobials could help to thwart this problem.
Uropathogenic E. coli (UPEC), which cause the majority
of UTIs, reside asymptomatically in an intestinal

reservoir. UPEC are shed in the feces, can colonize the
periurethral area, and then ascend the urethra to cause a
UTI. Type 1 pili tipped with the FimH adhesin facilitate
UPEC colonization of both the gut and the bladder by
binding mannosylated proteins that decorate the gut and
bladder epithelia (Fig. 1) [6]. Substituted analogs of man-
nose, called mannosides, have been developed to specif-
ically block the ability of UPEC to colonize the host by
binding to E. coli FimH [7]. The optimal analogs are bi-
phenyl mannosides, which bind FimH with orders of
magnitude higher affinity (~ 1,000,000×) than the natural
receptor [7]. Spaulding et al. [6] showed that biphenyl
mannosides were not only effective in treating an active
bladder infection, but also were able to simultaneously
reduce colonization of UPEC in the gastrointestinal tract
of mice, while leaving the structure of the microbial com-
munity undisturbed (Fig. 1) [6]. Thus, this antibiotic-
sparing therapy could prevent recurrent UTIs by both
reducing UPEC persistence within the host intestinal res-
ervoir and by preventing colonization of the bladder. Fur-
thermore, mutations in fimH that confer resistance to
mannoside binding would likely also disrupt its crucial in-
teractions with mannosylated host proteins. Mannosides
are therefore a promising therapeutic candidate with low
selection pressure for resistance.
Avidocin-CDs are also an example of a precision anti-

biotic that does not disrupt the gut microbiota. Kirk
et al. [8] demonstrated that the Avidocin-CD class of
bactericides specifically kills C. difficile by targeting
SlpA, the primary component of the C. difficile S-layer.
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Fig. 1 Antibiotic-sparing mannoside simultaneously treats an active bladder infection and targets the gastrointestinal reservoir of uropathogenic
E. coli. Uropathogenic E. coli (UPEC) binds mannosylated proteins (blue) found on the epithelia of the gut and bladder. 1 In the gut, UPEC bind
within the colonic crypts via interactions between the FimH adhesin on type I pili and mannose. 2 Mannosides (red) bind FimH with greater affinity
than mannose, removing colonizing UPEC from the gastrointestinal tract. 3–5 The infection cycle of a urinary tract infection involves multiple stages,
including initial attachment (3), intracellular proliferation (4), filamentation and efflux (5), and re-entry. Attachment and re-entry require FimH to bind
mannose (blue) on the bladder epithelium. 6 Mannosides (red) bind FimH and prevent binding to bladder cells, promoting elimination of UPEC from
the tissue. UPEC, Uropathogenic Escherichia coli
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Various forms of Avidocin-CDs can be designed that kill
particular isolates of C. difficile based on the S-layer type
[8]. Although S-layer-null mutants that are resistant to
this bactericide have been identified in vitro, they are
avirulent, which demonstrates the importance of the S-
layer in C. difficile sporulation and toxin production [8].
By showing that resistance to Avidocin-CDs forces C.
difficile to lose virulence, this work provides an elegant
example of the advantages to designing bactericides that
target virulence factors.
Successful precision therapeutics may also target a var-

iety of other virulence pathways, such as toxin produc-
tion. Small molecules virstatin and toxtazin B are
antivirulence inhibitors of Vibrio cholerae toxin expres-
sion, and both are efficacious in animal models of V.
cholerae infection [9]. The antivirulence drug bezlotoxu-
mab, a monoclonal antibody against the C. difficile toxin
TcdB, was FDA-approved in 2016 to treat C. difficile pa-
tients at high risk of recurrent infection [10]. The FDA
has also approved the use of therapeutics that neutralize
Clostridium botulinum neurotoxins (BoNTs) and Bacil-
lus anthracis protective antigen, a component of both
the lethal toxin and the edema toxin [10].
There are a number of important considerations in-

herent in the successful development and deployment
of precision-based therapeutics. In addition to the con-
cerns for traditional antibiotics, such as toxicity, bio-
availability, and feasibility of manufacturing, clinical use
of precision antimicrobials will require rapid diagnos-
tics to identify the patients for whom a particular ther-
apy would be useful. Creation of an effective precision
antimicrobial also demands a detailed understanding of
the mechanisms that drive the infection cycle of a
pathogen. This knowledge will inform the design of
tailor-made drugs that prevent the virulence and/or
persistence of a particular pathogenic organism by tar-
geting pathways that are absent in the beneficial micro-
biota as well as the human host. Bacterial community
dynamics must also be considered if precision antimi-
crobials are to be used in polymicrobial infections.
These questions will require further investigation as the
field of precision antimicrobials progresses.
Collaboration between academic laboratories and

pharmaceutical companies will be instrumental in over-
coming the unique challenges of precision antimicrobial
development. Such collaborations already show promise
in delivering precision antimicrobial therapies to the bed-
side. For example, Avidocins and mannosides are cur-
rently under development with the companies AvidBiotics
(South San Francisco, CA) and Fimbrion Therapeutics (St.
Louis, MO), respectively. Fimbrion Therapeutics is colla-
borating with GlaxoSmithKline (Brentford, London) to
develop mannosides as an antibiotic-sparing therapeutic.
A number of other anti-virulence therapies for

Staphylococcus aureus and Pseudomonas aeruginosa are
also undergoing clinical trials [10]. As the future of infec-
tious disease therapeutics shifts to precision antimicro-
bials, it is imperative that large pharmaceutical companies
increasingly engage in their research and development.

Conclusions
The rise of antibiotic resistance, combined with a
decades-long lull in the discovery of new antibiotics, in-
dicates that we may run out of antibiotics to treat drug-
resistant infections. Furthermore, we are only beginning
to appreciate the inextricable links between the human
microbiota and host health, and how antibiotic treat-
ment alters this dynamic. Therefore, it is becoming in-
creasingly evident that new therapeutic paradigms,
including the use of precision antimicrobial therapies,
must be employed to preserve human health. Precision
antimicrobials offer a path to preserving therapeutic effi-
cacy through the specific removal of targeted pathogens.
The absence of off-target effects will reduce selective
pressure on commensal microbes, while also preventing
the disruption of key functions performed by the micro-
biota. To prevent pathogen resistance to antimicrobials,
next-generation antimicrobials should be designed to kill
or disarm microorganisms by targeting factors that are
crucial for virulence. Successful use of these strategies
for E. coli, C. difficile, B. anthracis, and others demon-
strates a bright future for medicine as we enter a new
era of targeted antimicrobial development.
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